Antenna-based near-field scanning optical microscopyAntenna-based near-field scanning optical microscopy

被引:1
|
作者
Hamann, HF [1 ]
机构
[1] IBM TJ Watson Res Ctr, Yorktown Hts, NY 10598 USA
关键词
apertureless NSOM; scattering; atomic force microscopy; nanocyrstals; near-field optics; microscopy;
D O I
10.1117/12.607421
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Some time ago a near-field optical imaging technique had been introduced (Appl. Phys. Lett. 73, 1669 (1998)), which achieves high spatial resolution and excellent sensitivity by exploiting the highly localized and mutual near-field interactions between a Au-nanosphere and a sharp Si-probe under evanescent field illumination. Specifically, the scattering of Au-nanoparticles is significantly enhanced by the presence of a sharp nanoscopic probe demonstrating that the probe acts as an efficient antenna. The present study focuses on the underlying physics of the original results by investigating more systematically nanoparticle-probe interactions: (1) The polarization pattern of the scattered field of an evanescent wave excited Si-probe is studied, which demonstrates that the probe scatters as a single dipole. (2) The enhanced scattering signal is measured as a function of sample size, which allows us to predict the signal strength for different size samples. (3) The wavelength dependence of the probe-sample scattering is investigated by exciting Au-nanospheres on (@543 nm) and off plasmon resonance (@633nm). The data shows a pronounced wavelength dependence reflecting the near-field spectrum of the Au-nanocrystals. (4) Finally, a simple, but intuitive model describing these mutual near-field interactions is presented, which explains qualitatively both the size and wavelength dependence of the enhanced scattering signals.
引用
收藏
页码:126 / 133
页数:8
相关论文
共 50 条
  • [21] Photoreflectance Near-field Scanning Optical Microscopy
    Paulson, C
    Hawkins, B
    Sun, JX
    Ellis, AB
    McCaughan, L
    Kuech, TF
    OPTICAL MICROSTRUCTURAL CHARACTERIZATION OF SEMICONDUCTORS, 2000, 588 : 13 - 17
  • [22] Contact scanning near-field optical microscopy
    D. A. Lapshin
    S. K. Sekatskii
    V. S. Letokhov
    V. N. Reshetov
    Journal of Experimental and Theoretical Physics Letters, 1998, 67 : 263 - 268
  • [23] NEAR-FIELD OPTICAL-SCANNING MICROSCOPY
    DURIG, U
    POHL, DW
    ROHNER, F
    JOURNAL OF APPLIED PHYSICS, 1986, 59 (10) : 3318 - 3327
  • [24] Near-field scanning optical microscopy of nanostructures
    DeAro, JA
    Weston, KD
    Buratto, SK
    PHASE TRANSITIONS, 1999, 68 (01) : 27 - 57
  • [25] Scanning near-field optical microscopy (SNOM)
    Cricenti, A.
    PHYSICA STATUS SOLIDI C - CURRENT TOPICS IN SOLID STATE PHYSICS, VOL 5, NO 8, 2008, : 2615 - 2620
  • [26] Near-field scanning optical microscopy nanoprobes
    Fleischer, Monika
    NANOTECHNOLOGY REVIEWS, 2012, 1 (04) : 313 - 338
  • [27] Differential near-field scanning optical microscopy based on sensor arrays
    Ozcan, Aydogan
    NANOSCALE IMAGING, SENSING, AND ACTUATION FOR BIOMEDICAL APPLICATIONS V, 2008, 6865
  • [28] Near-field scanning optical microscopy and near-field confocal optical spectroscopy: Emerging techniques in biology
    MarcheseRagona, SP
    Haydon, PG
    IMAGING BRAIN STRUCTURE AND FUNCTION: EMERGING TECHNOLOGIES IN THE NEUROSCIENCES, 1997, 820 : 196 - 207
  • [29] Scanning near-field optical microscopy and near-field optical probes: properties, fabrication, and control of parameters
    Dryakhlushin, V. F.
    Veiko, V. P.
    Voznesenskii, N. B.
    QUANTUM ELECTRONICS, 2007, 37 (02) : 193 - 203
  • [30] Optical impedance matching with scanning near-field optical microscopy
    Gademann, A
    Durkan, C
    Shvets, IV
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2003, 36 (18) : 2193 - 2197