Comparing the solar-to-fuel energy conversion efficiency of ceria and perovskite based thermochemical redox cycles for splitting H2O and CO2

被引:101
|
作者
Muhich, Christopher L. [1 ]
Blaser, Samuel [2 ]
Hoes, Marie C. [2 ]
Steinfeld, Aldo [2 ]
机构
[1] Arizona State Univ, Sch Engn Matter Transport & Energy, 551 E Tyler Mall, Tempe, AZ 85287 USA
[2] Swiss Fed Inst Technol, Dept Mech & Proc Engn, Sonneggstr 3, CH-8092 Zurich, Switzerland
基金
瑞士国家科学基金会; 欧盟地平线“2020”;
关键词
Solar thermochemical water splitting; Solar thermochemical carbon dioxide splitting; Efficiency analysis; Redox cycling; Renewable fuels; HYDROGEN-PRODUCTION; THERMODYNAMIC ANALYSIS; SYSTEM EFFICIENCY; NONSTOICHIOMETRIC CERIA; OXYGEN NONSTOICHIOMETRY; HEAT-CAPACITY; WATER; REDUCTION; H-2; GENERATION;
D O I
10.1016/j.ijhydene.2018.08.137
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A thermodynamic analysis was conducted on a solar thermochemical plant for syngas generation via H2O/CO2-splitting redox cycles in order to determine the performance of six candidate redox materials under an array of operation conditions. The values obtained for the solar-to-fuel energy conversion efficiency are higher in relative order Zr-doped CeO2 > undoped CeO2 > La0.6Ca0.4MnO3 > La0.6Ca0.4Mn0.6Al0.4O3 > La0.6Sr0.4MnO3 > La0.6Sr0.4Mn0.6Al0.4O3. This ordering is attributed to their relative reducibility and reoxidizability, where the doped and undoped ceria, that favor oxidation, outperform perovskites, that favor reduction and therefore require high flowrates of excess H2O and CO2 during re-oxidation. Solids-solid heat recuperation during the temperature swing between the redox steps is crucial, particularly for ceria because of its low specific oxygen exchange capacity per mole and cycle. Conversely, the efficiencies of the perovskites are more dependent on gas-gas heat recuperation due to the massive excess of H2O/CO2. Redox material thermodynamics and plant/reactor performance are closely coupled, and must be considered together to maximize efficiency. Overall, we find that Zr-CeO2 is the most promising redox material, while perovskites which seem promising due to high H-2/CO production capacities under large H2O/CO2 flow rates, perform poorly from an efficiency perspective due to the high heating duties, especially for steam. (C) 2018 The Author(s). Published by Elsevier Ltd on behalf of Hydrogen Energy Publications LLC.
引用
收藏
页码:18814 / 18831
页数:18
相关论文
共 50 条
  • [31] A solar tower fuel plant for the thermochemical production of kerosene from H2O and CO2
    Zoller, Stefan
    Koepf, Erik
    Nizamian, Dustin
    Stephan, Marco
    Patane, Adriano
    Haueter, Philipp
    Romero, Manuel
    Gonzalez-Aguilar, Jose
    Lieftink, Dick
    de Wit, Ellart
    Brendelberger, Stefan
    Sizmann, Andreas
    Steinfeld, Aldo
    JOULE, 2022, 6 (07) : 1606 - 1616
  • [32] Solar-Driven Thermochemical Splitting of CO2 and In Situ Separation of CO and O2 across a Ceria Redox Membrane Reactor
    Tou, Maria
    Michalsky, Ronald
    Steinfeld, Aldo
    JOULE, 2017, 1 (01) : 146 - 154
  • [33] Characterization of Two-Step Tin-Based Redox System for Thermochemical Fuel Production from Solar-Driven CO2 and H2O Splitting Cycle
    Leveque, Gael
    Abanades, Stephane
    Jumas, Jean-Claude
    Olivier-Fourcade, Josette
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2014, 53 (14) : 5668 - 5677
  • [34] Solar thermochemical splitting of CO2 into separate streams of CO and O2 with high selectivity, stability, conversion, and efficiency
    Marxer, Daniel
    Furler, Philipp
    Takacs, Michael
    Steinfeld, Aldo
    ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (05) : 1142 - 1149
  • [35] Syngas production by simultaneous splitting of H2O and CO2 via ceria redox reactions in a high-temperature solar reactor
    Furler, Philipp
    Scheffe, Jonathan R.
    Steinfeld, Aldo
    ENERGY & ENVIRONMENTAL SCIENCE, 2012, 5 (03) : 6098 - 6103
  • [36] Recent progress on ceria doping and shaping strategies for solar thermochemical water and CO2 splitting cycles
    Haeussler, Anita
    Abanades, Stephane
    Jouannaux, Julien
    Drobek, Martin
    Ayral, Andre
    Julbe, Anne
    AIMS MATERIALS SCIENCE, 2019, 6 (05) : 657 - 684
  • [37] Concentration-Dependent Solar Thermochemical CO2/H2O Splitting Performance by Vanadia-Ceria Multiphase Metal Oxide Systems
    Riaz, Asim
    Ali, Muhammad Umair
    Enge, T. Gabriel
    Tsuzuki, Takuya
    Lowe, Adrian
    Lipinski, Wojciech
    RESEARCH, 2020, 2020 (2020)
  • [38] Syngas Production Through H2O/CO2 Thermochemical Splitting Over Doped Ceria-Zirconia Materials
    Luciani, Giuseppina
    Landi, Gianluca
    Di Benedetto, Almerinda
    FRONTIERS IN ENERGY RESEARCH, 2020, 8
  • [39] Perovskite oxide redox materials for two-step solar thermochemical CO2 splitting
    Tran, Ha Ngoc Ngan
    Li, Wei
    Liu, Xingbo
    CHEMICAL ENGINEERING JOURNAL, 2024, 500
  • [40] Isothermal redox for H2O and CO2 splitting - A review and perspective
    Al-Shankiti, Ibraheam
    Ehrhart, Brian D.
    Weimer, Alan W.
    SOLAR ENERGY, 2017, 156 : 21 - 29