Isoperimetric Inequalities for Eigenvalues of Triangles

被引:12
|
作者
Siudeja, Bartlomiej [1 ]
机构
[1] Univ Illinois, Dept Math, Urbana, IL 61801 USA
关键词
eigenvalues; symmetrization; polarization; variational methods; polynomial inequalities; 1ST DIRICHLET EIGENVALUE; LOWER BOUNDS;
D O I
10.1512/iumj.2010.59.3744
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Isoperimetric lower bounds for the first eigenvalue for the Dirichlet Laplacian on arbitrary triangles are proved using various symmetrization techniques. It is also shown that among triangles, the equilateral triangle maximizes the spectral gap and (under additional assumption) the ratio of the first two eigenvalues.
引用
收藏
页码:1097 / 1120
页数:24
相关论文
共 50 条
  • [31] GENERALIZED ISOPERIMETRIC INEQUALITIES
    LUTTINGER, JM
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1973, 70 (04) : 1005 - 1006
  • [32] Randomized Isoperimetric Inequalities
    Paouris, Grigoris
    Pivovarov, Peter
    CONVEXITY AND CONCENTRATION, 2017, 161 : 391 - 425
  • [33] Quantitative isoperimetric inequalities in
    Franceschi, Valentina
    Leonardi, Gian Paolo
    Monti, Roberto
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) : 3229 - 3239
  • [34] Isoperimetric inequalities for graphs
    Amghibech, S
    POTENTIAL ANALYSIS, 1997, 6 (04) : 355 - 367
  • [35] Sharp bounds for eigenvalues of triangles
    Siudeja, Bartlomiej
    MICHIGAN MATHEMATICAL JOURNAL, 2007, 55 (02) : 243 - 254
  • [36] Isoperimetric Sets for Weighted Twisted Eigenvalues
    Barbara Brandolini
    Antoine Henrot
    Anna Mercaldo
    Maria Rosaria Posteraro
    The Journal of Geometric Analysis, 2023, 33
  • [37] Isoperimetric Sets for Weighted Twisted Eigenvalues
    Brandolini, Barbara
    Henrot, Antoine
    Mercaldo, Anna
    Posteraro, Maria Rosaria
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (11)
  • [38] An isoperimetric inequality for eigenvalues of the Stekloff problem
    Brock, F
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2001, 81 (01): : 69 - 71
  • [39] Some Inequalities for Triangles
    Geupel, Oliver
    AMERICAN MATHEMATICAL MONTHLY, 2013, 120 (02): : 175 - 176
  • [40] AN ISOPERIMETRIC INEQUALITY FOR LAPLACE EIGENVALUES ON THE SPHERE
    Karpukhin, Mikhail
    Nadirashvili, Nikolai
    Penskoi, Alexei, V
    Polterovich, Iosif
    JOURNAL OF DIFFERENTIAL GEOMETRY, 2021, 118 (02) : 313 - 333