Active learning for hierarchical pairwise data clustering

被引:0
|
作者
Zöller, T [1 ]
Buhmann, JM [1 ]
机构
[1] Univ Bonn, Inst Informat 3, D-5300 Bonn, Germany
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pairwise data clustering is a well founded grouping technique based on relational data of objects which has a widespread application domain. However, its applicability suffers from the disadvantageous fact that N objects give rise to N(N - 1)/2 relations. To cure this unfavorable scaling, techniques to sparsely sample the relations have been developed. Yet a randomly chosen subset of the data might not grasp the structure of the complete data set. To overcome this deficit, we use active learning methods from the field of Statistical Decision Theory. Extending on existing approaches we present a novel algorithm for actively learning hierarchical group structures based on mean field annealing optimization.
引用
收藏
页码:186 / 189
页数:2
相关论文
共 50 条
  • [21] Active Image Clustering with Pairwise Constraints from Humans
    Biswas, Arijit
    Jacobs, David
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2014, 108 (1-2) : 133 - 147
  • [22] Active Image Clustering with Pairwise Constraints from Humans
    Arijit Biswas
    David Jacobs
    International Journal of Computer Vision, 2014, 108 : 133 - 147
  • [23] Active semi-supervision for pairwise constrained clustering
    Basu, S
    Banerjee, A
    Mooney, RJ
    Proceedings of the Fourth SIAM International Conference on Data Mining, 2004, : 333 - 344
  • [24] Hierarchical Federated Learning with Adaptive Clustering on Non-IID Data
    Tian, Yuqing
    Zhang, Zhaoyang
    Yang, Zhaohui
    Jin, Richeng
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 627 - 632
  • [25] On Agglomerative Hierarchical Clustering Using Clusterwise Tolerance Based Pairwise Constraints
    Hamasuna, Yukihiro
    Endo, Yasunori
    Miyamoto, Sadaaki
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2012, 16 (01) : 174 - 179
  • [26] Semi-Supervised Agglomerative Hierarchical Clustering Algorithms with Pairwise Constraints
    Miyamoto, Sadaaki
    Terami, Akihisa
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [27] Hierarchical Clustering for Euclidean Data
    Charikar, Moses
    Chatziafratis, Vaggos
    Niazadeh, Rad
    Yaroslavtsev, Grigory
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [28] Scalable and Fast Hierarchical Clustering of IoT Malware Using Active Data Selection
    He, Tianxiang
    Han, Chansu
    Takahashi, Takeshi
    Kijima, Shuji
    Takeuchi, Jun'ichi
    2021 SIXTH INTERNATIONAL CONFERENCE ON FOG AND MOBILE EDGE COMPUTING (FMEC), 2021, : 120 - 125
  • [29] Hierarchical clustering for data mining
    Szymkowiak, A
    Larsen, J
    Hansen, LK
    KNOWLEDGE-BASED INTELLIGENT INFORMATION ENGINEERING SYSTEMS & ALLIED TECHNOLOGIES, PTS 1 AND 2, 2001, 69 : 261 - 265
  • [30] Hierarchical Graphs for Data Clustering
    Palomo, E. J.
    Ortiz-de-Lamano-Lobato, J. M.
    Lopez-Rodriguez, Domingo
    Luque, R. M.
    BIO-INSPIRED SYSTEMS: COMPUTATIONAL AND AMBIENT INTELLIGENCE, PT 1, 2009, 5517 : 432 - +