Quantum trajectories from a discrete -: Variable representation method

被引:6
|
作者
Gonzalez, Maria Fernanda
Gimenez, Xavier
Gonzalez-Aguilar, Javier
Bofill, Josep Maria [1 ]
机构
[1] Univ Barcelona & Parc Cient Barcelona, Quim Organ & Ctr Especial Recerca & Quim Teor, Barcelona 08028, Spain
[2] CTr Especial Recerca Quim Teor, Dept Quim Fis, Barcelona 08028, Spain
来源
JOURNAL OF PHYSICAL CHEMISTRY A | 2007年 / 111卷 / 41期
关键词
D O I
10.1021/jp072237o
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A method for obtaining quantum trajectories from a discrete-variable representation computation of the quantum potential is presented. The method exploits the linearity of the Schrodinger equation, deals smoothly with the quantum potential singularities, and readily performs the time propagation up to fairly large total elapsed times. A one-dimensional test of the general n-dimensional formulation is included.
引用
收藏
页码:10226 / 10233
页数:8
相关论文
共 50 条
  • [1] A DISCRETE VARIABLE REPRESENTATION METHOD FOR QUANTUM REACTIVE SCATTERING .1. THEORY
    GROENENBOOM, GC
    COLBERT, DT
    MILLER, WH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 215 - PHYS
  • [2] A coherent discrete variable representation method on a sphere
    Yu, Hua-Gen
    JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (09):
  • [3] A DISCRETE VARIABLE REPRESENTATION METHOD FOR QUANTUM REACTIVE SCATTERING .2. IMPLEMENTATION AND EXAMPLES
    COLBERT, DT
    GROENENBOOM, GC
    MILLER, WH
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1992, 203 : 213 - PHYS
  • [4] COMBINING THE DISCRETE VARIABLE REPRESENTATION WITH THE S-MATRIX KOHN METHOD FOR QUANTUM REACTIVE SCATTERING
    GROENENBOOM, GC
    COLBERT, DT
    JOURNAL OF CHEMICAL PHYSICS, 1993, 99 (12): : 9681 - 9696
  • [5] A study of two-electron quantum dot spectrum using discrete variable representation method
    Prudente, FV
    Costa, LS
    Vianna, JDM
    JOURNAL OF CHEMICAL PHYSICS, 2005, 123 (22):
  • [6] Nondirect Product Discrete Variable Representation in Multidimensional Quantum Problems
    Melezhik, Vladimir S.
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2012), VOLS A AND B, 2012, 1479 : 1200 - 1203
  • [7] A time-dependent discrete variable representation method
    Adhikari, S
    Billing, GD
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (04): : 1409 - 1414
  • [8] Discrete variable method for nonintegrable quantum systems
    Schweizer, W
    Fassbinder, P
    COMPUTERS IN PHYSICS, 1997, 11 (06): : 641 - 646
  • [9] A discrete variable representation method for studying the rovibrational quantum dynamics of molecules with more than three atoms
    Wang, Xiao-Gang
    Carrington, Tucker, Jr.
    JOURNAL OF CHEMICAL PHYSICS, 2009, 130 (09):
  • [10] An improved Lobatto discrete variable representation by a phase optimisation and variable mapping method
    Yu, Dequan
    Cong, Shu-Lin
    Sun, Zhigang
    CHEMICAL PHYSICS, 2015, 458 : 41 - 51