Error estimate of second-order finite difference scheme for solving the Riesz space distributed-order diffusion equation

被引:62
|
作者
Abbaszadeh, Mostafa [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, 424 Hafez Ave, Tehran 15914, Iran
关键词
Finite difference method; Riesz space distributed-order diffusion equation; Unconditional stability; Convergence; TIME-FRACTIONAL DIFFUSION; ACCURATE NUMERICAL-METHOD; WAVE-EQUATIONS;
D O I
10.1016/j.aml.2018.08.024
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the current paper, an error estimate has been proposed to find a secondorder finite difference scheme for solving the Riesz space distributed-order diffusion equation. The convergence order of the proposed method is O(tau(2)+ h(2)). The numerical results show the efficiency of the new technique. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:179 / 185
页数:7
相关论文
共 50 条
  • [31] A fast difference scheme on a graded mesh for time-fractional and space distributed-order diffusion equation with nonsmooth data
    Fardi, Mojtaba
    Khan, Yasir
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2022, 36 (15):
  • [32] Fast and efficient finite difference method for the distributed-order diffusion equation based on the staggered grids
    Zhao, Xuan
    Li, Xiaoli
    Li, Ziyan
    APPLIED NUMERICAL MATHEMATICS, 2022, 174 : 34 - 45
  • [33] Numerical analysis of a second-order finite difference scheme for Riesz space-fractional Allen-Cahn equations
    Xu, Changling
    Cao, Yang
    Hou, Tianliang
    ADVANCES IN CONTINUOUS AND DISCRETE MODELS, 2025, 2025 (01):
  • [34] A fast second-order difference scheme for the space-time fractional equation
    Xu, Weiyan
    Sun, Hong
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2019, 35 (04) : 1326 - 1342
  • [35] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Zhang, Pu
    Pu, Hai
    NUMERICAL ALGORITHMS, 2017, 76 (02) : 573 - 598
  • [36] Second-order explicit difference schemes for the space fractional advection diffusion equation
    Li, Wei
    Li, Can
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 : 446 - 457
  • [37] A second-order compact difference scheme for the fourth-order fractional sub-diffusion equation
    Pu Zhang
    Hai Pu
    Numerical Algorithms, 2017, 76 : 573 - 598
  • [38] DIFFERENCE SCHEME OF SOLVING CAUCHY-PROBLEM FOR A DEGENERATE HYPERBOLIC SECOND-ORDER EQUATION IN ONE SPACE VARIABLE
    KOKOSHKEVICH, A
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1975, 23 (01): : 81 - 85
  • [39] Implicit Runge-Kutta and spectral Galerkin methods for Riesz space fractional/distributed-order diffusion equation
    Zhao, Jingjun
    Zhang, Yanming
    Xu, Yang
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (02):
  • [40] An implicit finite difference scheme for simulating the space fractional-order riesz diffusion processes
    Cai, X.
    Liu, F.
    Advances in Computational Methods in Sciences and Engineering 2005, Vols 4 A & 4 B, 2005, 4A-4B : 81 - 84