On the global well-posedness of a generalized 2D Boussinesq equations

被引:6
|
作者
Jia, Junxiong [1 ,2 ]
Peng, Jigen [1 ,2 ]
Li, Kexue [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
[2] BCMIIS, Beijing, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Generalized 2D Boussinesq equation; Global regularity; Supercritical Boussinesq equations; Regularization effect; MAXIMUM PRINCIPLE; SYSTEM; VISCOSITY;
D O I
10.1007/s00030-014-0309-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the global solutions to a generalized 2D Boussinesq equationwith , , , , and . When , , and , where is an explicit function as a technical bound, we prove that the above equation has a global and unique solution in suitable functional space.
引用
收藏
页码:911 / 945
页数:35
相关论文
共 50 条
  • [21] Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations
    Wan, Renhui
    Chen, Jiecheng
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2016, 67 (04):
  • [22] Global well-posedness for the 2D dispersive SQG equation and inviscid Boussinesq equations
    Renhui Wan
    Jiecheng Chen
    Zeitschrift für angewandte Mathematik und Physik, 2016, 67
  • [23] Global well-posedness of 2D generalized MHD equations with fractional diffusion
    Zhiqiang Wei
    Weiyi Zhu
    Journal of Inequalities and Applications, 2013
  • [24] Global well-posedness of 2D generalized MHD equations with fractional diffusion
    Wei, Zhiqiang
    Zhu, Weiyi
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
  • [25] On the global well-posedness for the 2D Euler-Boussinesq system
    Xu, Fuyi
    Yuan, Jia
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2014, 17 : 137 - 146
  • [26] GLOBAL WELL-POSEDNESS AND LARGE TIME BEHAVIOR TO 2D BOUSSINESQ EQUATIONS FOR MHD CONVECTION
    WANG, S. H. A. S. H. A.
    XU, WEN-QING
    LIU, J. I. T. A. O.
    METHODS AND APPLICATIONS OF ANALYSIS, 2022, 29 (01) : 31 - 56
  • [27] Global well-posedness for strongly damped multidimensional generalized Boussinesq equations
    Shen Jihong
    Zhang Mingyou
    Wang Xingchang
    Liu Bowei
    Xu Runzhang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (15) : 4437 - 4450
  • [28] Global well-posedness of the viscous Boussinesq equations
    Hou, TY
    Li, CM
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2005, 12 (01) : 1 - 12
  • [29] On the well-posedness of the inviscid 2D Boussinesq equation
    Inci, Hasan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):
  • [30] Global well-posedness for 3D generalized Navier-Stokes-Boussinesq equations
    Quan-sen Jiu
    Huan Yu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 1 - 16