On the global well-posedness of a generalized 2D Boussinesq equations

被引:6
|
作者
Jia, Junxiong [1 ,2 ]
Peng, Jigen [1 ,2 ]
Li, Kexue [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Dept Math, Xian 710049, Peoples R China
[2] BCMIIS, Beijing, Peoples R China
基金
美国国家科学基金会; 中国博士后科学基金;
关键词
Generalized 2D Boussinesq equation; Global regularity; Supercritical Boussinesq equations; Regularization effect; MAXIMUM PRINCIPLE; SYSTEM; VISCOSITY;
D O I
10.1007/s00030-014-0309-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the global solutions to a generalized 2D Boussinesq equationwith , , , , and . When , , and , where is an explicit function as a technical bound, we prove that the above equation has a global and unique solution in suitable functional space.
引用
收藏
页码:911 / 945
页数:35
相关论文
共 50 条
  • [1] On the global well-posedness of a generalized 2D Boussinesq equations
    Junxiong Jia
    Jigen Peng
    Kexue Li
    Nonlinear Differential Equations and Applications NoDEA, 2015, 22 : 911 - 945
  • [2] Global Well-Posedness of the 2D Boussinesq Equations with Vertical Dissipation
    Li, Jinkai
    Titi, Edriss S.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (03) : 983 - 1001
  • [3] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Jin, Xueting
    Xiao, Yuelong
    Yu, Huan
    ACTA MATHEMATICA SCIENTIA, 2022, 42 (04) : 1293 - 1309
  • [4] Global Well-Posedness of the 2D Boussinesq Equations with Partial Dissipation
    Xueting Jin
    Yuelong Xiao
    Huan Yu
    Acta Mathematica Scientia, 2022, 42 : 1293 - 1309
  • [5] GLOBAL WELL-POSEDNESS OF THE 2D BOUSSINESQ EQUATIONS WITH PARTIAL DISSIPATION
    晋雪婷
    肖跃龙
    于幻
    ActaMathematicaScientia, 2022, 42 (04) : 1293 - 1309
  • [6] Global Well-Posedness of the 2D Boussinesq Equations with Vertical Dissipation
    Jinkai Li
    Edriss S. Titi
    Archive for Rational Mechanics and Analysis, 2016, 220 : 983 - 1001
  • [7] Global well-posedness for the 2D Boussinesq equations with zero viscosity
    Zhou, Daoguo
    Li, Zilai
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 447 (02) : 1072 - 1079
  • [8] GLOBAL WELL-POSEDNESS OF THE 3D GENERALIZED BOUSSINESQ EQUATIONS
    Xu, Bo
    Zhou, Jiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2024, 29 (12): : 4821 - 4829
  • [9] GLOBAL WELL-POSEDNESS FOR THE 2D BOUSSINESQ EQUATIONS WITH A VELOCITY DAMPING TERM
    Wan, Renhui
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (05) : 2709 - 2730
  • [10] Persistence of global well-posedness for the 2D Boussinesq equations with fractional dissipation
    Xing Su
    Gangwei Wang
    Yue Wang
    Advances in Difference Equations, 2019