A posteriori error estimates for the fractional-step θ-scheme for linear parabolic equations

被引:4
|
作者
Karakatsani, Fotini [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
关键词
a posteriori error estimates; linear parabolic equations; fractional-step theta-scheme; FINITE-ELEMENT METHODS; CRANK-NICOLSON METHOD; ELLIPTIC RECONSTRUCTION; DISCRETIZATIONS;
D O I
10.1093/imanum/drq033
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We derive residual-based a posteriori error estimates of optimal order for time discretizations of linear parabolic equations by the fractional-step theta-scheme. We first consider the time semidiscrete problem. The main tool of our analysis is an appropriate reconstruction of the piecewise linear interpolant of the approximate solution that leads to a residual of optimal order. Next we extend the above-mentioned results to the case of a full discretization. The theoretical results are justified with numerical experiments.
引用
收藏
页码:141 / 162
页数:22
相关论文
共 50 条
  • [21] A Posteriori Error Estimates for Parabolic Variational Inequalities
    Yves Achdou
    Frédéric Hecht
    David Pommier
    Journal of Scientific Computing, 2008, 37 : 336 - 366
  • [22] A Posteriori Error Estimates for Parabolic Variational Inequalities
    Achdou, Yves
    Hecht, Frederic
    Pommier, David
    JOURNAL OF SCIENTIFIC COMPUTING, 2008, 37 (03) : 336 - 366
  • [23] Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems
    Lakkis, Omar
    Makridakis, Charalambos
    MATHEMATICS OF COMPUTATION, 2006, 75 (256) : 1627 - 1658
  • [24] A posteriori error estimates for Maxwell equations
    Schoeberl, Joachim
    MATHEMATICS OF COMPUTATION, 2008, 77 (262) : 633 - 649
  • [25] Pointwise a posteriori error estimates for monotone semi-linear equations
    Nochetto, Ricardo H.
    Schmidt, Alfred
    Siebert, Kunibert G.
    Veeser, Andreas
    NUMERISCHE MATHEMATIK, 2006, 104 (04) : 515 - 538
  • [26] Source recovery with a posteriori error estimates in linear partial differential equations
    Leonov, Alexander S.
    JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (05): : 677 - 692
  • [27] A posteriori error estimates for operator equations
    Slawik, L
    Karafiat, A
    NUMERICAL METHODS AND ERROR BOUNDS, 1996, 89 : 241 - 248
  • [28] Pointwise a posteriori error estimates for monotone semi-linear equations
    Ricardo H. Nochetto
    Alfred Schmidt
    Kunibert G. Siebert
    Andreas Veeser
    Numerische Mathematik, 2006, 104 : 515 - 538
  • [29] ERROR ESTIMATES FOR PARABOLIC EQUATIONS
    ISAACSON, E
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1961, 14 (03) : 381 - &
  • [30] A posteriori error estimates of spectral method for optimal control problems governed by parabolic equations
    Chen YanPing
    Huang YunQing
    Yi NianYu
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (08): : 1376 - 1390