Thermochemical lithosphere differentiation and the origin of cratonic mantle

被引:42
|
作者
Capitanio, Fabio A. [1 ]
Nebel, Oliver [1 ]
Cawood, Peter A. [1 ]
机构
[1] Monash Univ, Sch Earth Atmosphere & Environm, Clayton, Vic, Australia
基金
澳大利亚研究理事会;
关键词
CONTINENTAL-CRUST; PLATE-TECTONICS; THERMAL STRUCTURE; EVOLUTION; CONVECTION; CONSTRAINTS; RHEOLOGY; EARTH; GENERATION; SUBDUCTION;
D O I
10.1038/s41586-020-2976-3
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Cratons record the early history of continental lithosphere formation, yet how they became the most enduring part of the lithosphere on Earth remains unknown(1). Here we propose a mechanism for the formation of large volumes of melt-depleted cratonic lithospheric mantle (CLM) and its evolution to stable cratons. Numerical models show large decompression melting of a hot, early Earth mantle beneath a stretching lithosphere, where melt extraction leaves large volumes of depleted mantle at depth. The dehydrated, stiffer mantle resists further deformation, forcing strain migration and cooling, thereby assimilating depleted mantle into the lithosphere. The negative feedback between strain localization and stiffening sustains long-term diffused extension and emplacement of large amounts of depleted CLM. The formation of CLM at low pressure and its deeper re-equilibration reproduces the evolution of Archaean lithosphere constrained by depth-temperature conditions(1,2), whereas large degrees of depletion(3,4) and melt volumes(5) in Archaean cratons are best matched by models with lower lithospheric strength. Under these conditions, which are otherwise viable for plate tectonics(6,7), thermochemical differentiation effectively prevents yielding and formation of margins: rifting and lithosphere subduction are short lived and embedded in the cooling CLM as relict structures, reproducing the recycling and reworking environments that are found in Archaean cratons(8,9). Although they undergo major melting and extensive recycling during an early stage lasting approximately 500 million years, the modelled lithospheres progressively differentiate and stabilize, and then recycling and reworking become episodic. Early major melting and recycling events explain the production and loss of primordial Hadean lithosphere and crust(10), whereas later stabilization and episodic reworking provides a context for the creation of continental cratons in the Archaean era(4,8). A model is proposed for the origin of cratonic lithospheric mantle in which rifting and melting in the hot, early Earth mantle leave behind large volumes of stiffer, depleted mantle.
引用
收藏
页码:89 / +
页数:19
相关论文
共 50 条
  • [21] Formation and upwelling of mantle diapirs through the cratonic lithosphere: Numerical thermomechanical modeling
    Polyansky, O. P.
    Korobeynikov, S. N.
    Babichev, A. V.
    Reverdatto, V. V.
    PETROLOGY, 2012, 20 (02) : 120 - 137
  • [22] Interaction of mantle convection with the lithosphere and the origin of kimberlites
    Aryasova, O. V.
    Khazan, Ya. M.
    GEOFIZICHESKIY ZHURNAL-GEOPHYSICAL JOURNAL, 2013, 35 (05): : 150 - 171
  • [23] Emplacement of deep upper-mantle rocks into cratonic lithosphere by convection and diapiric upwelling
    Drury, MR
    Van Roermund, HLM
    Carswell, DA
    De Smet, JH
    Van den Berg, AP
    Vlaar, NJ
    JOURNAL OF PETROLOGY, 2001, 42 (01) : 131 - 140
  • [24] Small Shear Wave Splitting Delays Suggest Weak Anisotropy in Cratonic Mantle Lithosphere
    Chen, Xiaoran
    Levin, Vadim
    Yuan, Huaiyu
    GEOPHYSICAL RESEARCH LETTERS, 2021, 48 (16)
  • [25] Rejuvenation and erosion of the cratonic lithosphere
    Foley, Stephen F.
    NATURE GEOSCIENCE, 2008, 1 (08) : 503 - 510
  • [26] Osmium isotope constraints on formation and refertilization of the non-cratonic continental mantle lithosphere
    Reisberg, Laurie
    CHEMICAL GEOLOGY, 2021, 574
  • [27] Growth and reworking of cratonic lithosphere
    Zheng YongFei
    Wu FuYuan
    CHINESE SCIENCE BULLETIN, 2009, 54 (19): : 3347 - 3353
  • [28] Rejuvenation and erosion of the cratonic lithosphere
    Stephen F. Foley
    Nature Geoscience, 2008, 1 : 503 - 510
  • [29] The fate of delaminated cratonic lithosphere
    Peng, Lihang
    Liu, Lijun
    Liu, Liang
    EARTH AND PLANETARY SCIENCE LETTERS, 2022, 594
  • [30] Origin of mantle endmembers and the role of depleted oceanic lithosphere
    Workman, R. K.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2008, 72 (12) : A1036 - A1036