Deep Neural Network Based Malware Detection Using Two Dimensional Binary Program Features

被引:0
|
作者
Saxe, Joshua [1 ]
Berlin, Konstantin [1 ]
机构
[1] Invincea Labs LLC, Fairfax, VA 22030 USA
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
In this paper we introduce a deep neural network based malware detection system that Invincea has developed, which achieves a usable detection rate at an extremely low false positive rate and scales to real world training example volumes on commodity hardware. We show that our system achieves a 95% detection rate at 0.1% false positive rate (FPR), based on more than 400,000 software binaries sourced directly from our customers and internal malware databases. In addition, we describe a non-parametric method for adjusting the classifier's scores to better represent expected precision in the deployment environment. Our results demonstrate that it is now feasible to quickly train and deploy a low resource, highly accurate machine learning classification model, with false positive rates that approach traditional labor intensive expert rule based malware detection, while also detecting previously unseen malware missed by these traditional approaches. Since machine learning models tend to improve with larger data sizes, we foresee deep neural network classification models gaining in importance as part of a layered network defense strategy in coming years.
引用
收藏
页码:11 / 20
页数:10
相关论文
共 50 条
  • [11] Malware detection employed by visualization and deep neural network
    Pinhero, Anson
    Anupama, M. L.
    Vinod, P.
    Visaggio, C. A.
    Aneesh, N.
    Abhijith, S.
    AnanthaKrishnan, S.
    COMPUTERS & SECURITY, 2021, 105
  • [12] Effective detection of mobile malware behavior based on explainable deep neural network
    Yan, Anli
    Chen, Zhenxiang
    Zhang, Haibo
    Peng, Lizhi
    Yan, Qiben
    Hassan, Muhammad Umair
    Zhao, Chuan
    Yang, Bo
    NEUROCOMPUTING, 2021, 453 : 482 - 492
  • [13] A novel framework for image-based malware detection with a deep neural network
    Jian, Yifei
    Kuang, Hongbo
    Ren, Chenglong
    Ma, Zicheng
    Wang, Haizhou
    COMPUTERS & SECURITY, 2021, 109
  • [14] FEDetect: A Federated Learning-Based Malware Detection and Classification Using Deep Neural Network Algorithms
    Ciplak, Zeki
    Yildiz, Kazim
    Altinkaya, Sahsene
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2025,
  • [15] Flow-based Malware Detection Using Convolutional Neural Network
    Yeo, M.
    Koo, Y.
    Yoon, Y.
    Hwang, T.
    Ryu, J.
    Song, J.
    Park, C.
    2018 32ND INTERNATIONAL CONFERENCE ON INFORMATION NETWORKING (ICOIN), 2018, : 910 - 913
  • [16] Embedding and Siamese deep neural network-based malware detection in Internet of Things
    Lakshmi, T. Sree
    Govindarajan, M.
    Srinivasulu, Asadi
    INTERNATIONAL JOURNAL OF PERVASIVE COMPUTING AND COMMUNICATIONS, 2022,
  • [17] Network Malware Detection Using Deep Learning Network Analysis
    Xiao P.
    Journal of Cyber Security and Mobility, 2024, 13 (01): : 27 - 52
  • [18] Remora based Deep Maxout Network model for network intrusion detection using Convolutional Neural Network features
    Pingale, Subhash, V
    Sutar, Sanjay R.
    COMPUTERS & ELECTRICAL ENGINEERING, 2023, 110
  • [19] Multimodal Neural Network Based Malware Detection for Android
    Gu, Fuxuan
    Du, Zhibo
    2024 2ND INTERNATIONAL CONFERENCE ON MOBILE INTERNET, CLOUD COMPUTING AND INFORMATION SECURITY, MICCIS 2024, 2024, : 63 - 67
  • [20] Using network traffic analysis deep learning based Android malware detection
    Utku A.
    Journal of the Faculty of Engineering and Architecture of Gazi University, 2022, 37 (04): : 1823 - 1838