A New Grammar for Creating Convolutional Neural Networks Applied to Medical Image Classification

被引:4
|
作者
da Silva, Cleber A. C. F. [1 ]
Miranda, Pericles B. C. [1 ]
Cordeiro, Filipe R. [1 ]
机构
[1] Fed Rural Univ Pernambuco UFRPE, Dept Stat & Informat, Recife, PE, Brazil
关键词
Grammatical Evolution; Deep Neural Networks; Multi-Objective Optimization;
D O I
10.1109/SIBGRAPI54419.2021.00022
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the last decade, the adoption of Deep Convolutional Neural Networks (CNNs) has been successfully applied to solve computer vision tasks, such as image classification in the medical field. However, the several architectures proposed in the literature are composed of an increasing number of parameters and complexity. Therefore, finding the optimal trade-off between accuracy and model complexity for a given data set is challenging. To help the search for these suitable configurations, this work proposes using a new Context-Free Grammar associated with a Multi-Objective Grammatical Evolution Algorithm that generates suitable CNNs for a given image classification problem. In this structure, the new grammar maps every possible search space for the creation of networks. Furthermore, the Multi-Objective Grammatical Evolution Algorithm used optimizes this search taking into account two objective functions: accuracy and F-1-score. Our proposal was used in three medical image datasets from MedMNIST: PathMNIST, OCTMNIST, and OrganMNIST Axial. The results showed that our method generated simpler networks with equal or superior performance from state-of-the-art (more complex) networks and others CNNs also generated by grammatical evolution process.
引用
收藏
页码:97 / 104
页数:8
相关论文
共 50 条
  • [41] Deep Convolutional Neural Networks for Hyperspectral Image Classification
    Hu, Wei
    Huang, Yangyu
    Wei, Li
    Zhang, Fan
    Li, Hengchao
    JOURNAL OF SENSORS, 2015, 2015
  • [42] Morphological Convolutional Neural Networks for Hyperspectral Image Classification
    Roy, Swalpa Kumar
    Mondal, Ranjan
    Paoletti, Mercedes E.
    Haut, Juan M.
    Plaza, Antonio
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 8689 - 8702
  • [43] Improving the Performance of Convolutional Neural Networks for Image Classification
    Giveki, Davar
    OPTICAL MEMORY AND NEURAL NETWORKS, 2021, 30 (01) : 51 - 66
  • [44] An Image Classification Scheme for Improved Convolutional Neural Networks
    He Weixin
    Cong Linhu
    Deng Jianqiu
    Zhou Haichao
    2019 4TH INTERNATIONAL CONFERENCE ON MECHANICAL, CONTROL AND COMPUTER ENGINEERING (ICMCCE 2019), 2019, : 614 - 617
  • [45] Dealing with Robustness of Convolutional Neural Networks for Image Classification
    Arcaini, Paolo
    Bombarda, Andrea
    Bonfanti, Silvia
    Gargantini, Angelo
    2020 IEEE INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE TESTING (AITEST), 2020, : 7 - 14
  • [46] Design of Kernels in Convolutional Neural Networks for Image Classification
    Sun, Zhun
    Ozay, Mete
    Okatani, Takayuki
    COMPUTER VISION - ECCV 2016, PT VII, 2016, 9911 : 51 - 66
  • [47] GROUP CONVOLUTIONAL NEURAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Li, Xian
    Ding, Mingli
    Pizurica, Aleksandra
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 639 - 643
  • [48] Quaternion convolutional neural networks for hyperspectral image classification
    Zhou, Heng
    Zhang, Xin
    Zhang, Chunlei
    Ma, Qiaoyu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [49] Fruit Image Classification Using Convolutional Neural Networks
    Ashraf, Shawon
    Kadery, Ivan
    Chowdhury, Md Abdul Ahad
    Mahbub, Tahsin Zahin
    Rahman, Rashedur M.
    INTERNATIONAL JOURNAL OF SOFTWARE INNOVATION, 2019, 7 (04) : 51 - 70
  • [50] Fiber Image Classification Using Convolutional Neural Networks
    Wang, Xinxin
    Chen, Zhao
    Liu, Guohua
    Wan, Yan
    2017 4TH INTERNATIONAL CONFERENCE ON SYSTEMS AND INFORMATICS (ICSAI), 2017, : 1214 - 1218