A Framework for Deep Constrained Clustering - Algorithms and Advances

被引:11
|
作者
Zhang, Hongjing [1 ]
Basu, Sugato [2 ]
Davidson, Ian [1 ]
机构
[1] Univ Calif Davis, Dept Comp Sci, Davis, CA 95616 USA
[2] Google Res, Mountain View, CA 94043 USA
来源
MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT I | 2020年 / 11906卷
关键词
Constrained clustering; Deep learning; Semi-supervised clustering; Reproducible research;
D O I
10.1007/978-3-030-46150-8_4
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The area of constrained clustering has been extensively explored by researchers and used by practitioners. Constrained clustering formulations exist for popular algorithms such as k-means, mixture models, and spectral clustering but have several limitations. A fundamental strength of deep learning is its flexibility, and here we explore a deep learning framework for constrained clustering and in particular explore how it can extend the field of constrained clustering. We show that our framework can not only handle standard together/apart constraints (without the well documented negative effects reported earlier) generated from labeled side information but more complex constraints generated from new types of side information such as continuous values and high-level domain knowledge. (Source code available at: http://github.com/blueocean92/deep_constrained_clustering)
引用
收藏
页码:57 / 72
页数:16
相关论文
共 50 条
  • [41] General Framework for Understanding Compressed Subspace Clustering Algorithms
    Meng, Linghang
    Li, Gen
    Yan, Jingkai
    Gu, Yuantao
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (06) : 1504 - 1519
  • [42] A deep clustering framework for underwater image recognition
    Zhao, Lei
    Zhang, Xiao-Lei
    Yang, Kunde
    DIGITAL SIGNAL PROCESSING, 2025, 161
  • [43] Deep Embedded Clustering Framework for Mixed Data
    Lee, Yonggu
    Park, Chulwung
    Kang, Shinjin
    IEEE ACCESS, 2023, 11 : 33 - 40
  • [44] A deep clustering framework for load pattern segmentation
    Kumar, Abhimanyu
    Mallipeddi, Rammohan
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2024, 38
  • [45] A Unified Framework for Clustering Constrained Data Without Locality Property
    Hu Ding
    Jinhui Xu
    Algorithmica, 2020, 82 : 808 - 852
  • [46] A Unified Framework for Clustering Constrained Data Without Locality Property
    Ding, Hu
    Xu, Jinhui
    ALGORITHMICA, 2020, 82 (04) : 808 - 852
  • [47] Hybrid parallel evolutionary algorithms for constrained optimization utilizing PC clustering
    Lee, CH
    Park, KH
    Kim, JH
    PROCEEDINGS OF THE 2001 CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1 AND 2, 2001, : 1436 - 1441
  • [48] Constrained spanning tree algorithms for irregularly-shaped spatial clustering
    Costa, Marcelo Azevedo
    Assuncao, Renato Martins
    Kulldorff, Martin
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2012, 56 (06) : 1771 - 1783
  • [49] A Deep Constrained and Synchronous Training Framework for Hybrid Precoding
    Liu, Zijian
    Luo, Yang
    Xu, Yan
    Luo, Chunbo
    IEEE COMMUNICATIONS LETTERS, 2022, 26 (06) : 1288 - 1292
  • [50] MICCF: A Mutual Information Constrained Clustering Framework for Learning Clustering-Oriented Feature Representations
    Li, Hongyu
    Zhang, Lefei
    Su, Kehua
    Yu, Wei
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2024, 18 (08)