Double replication for characterizing cracks in surface-hardened polydimethylsiloxane

被引:1
|
作者
Leifels, Miriam [1 ]
Mayer, Andre [1 ]
Scheer, Hella-Christin [1 ]
机构
[1] Univ Wuppertal, Sch Elect Informat & Media Engn, Microstruct Engn, D-42119 Wuppertal, Germany
来源
关键词
NEUTRON REFLECTOMETRY; BRITTLE FILMS; POLY(DIMETHYLSILOXANE); NETWORKS; LAYER;
D O I
10.1116/1.5119691
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Surface-hardened polydimethylsiloxane (PDMS) with random cracks is studied by means of double replication. The PDMS samples are prepared under different curing conditions, resulting in a different Young's modulus of the bulk. To modify the surface, an excimer lamp at 172 nm is used. The samples are stretched uniaxially until the first cracks appear. As an evaluation under strain is hard or rather impossible, the idea is to replicate the cracked sample in a curable material and to characterize the cracks by inspection of the replica. To protect the sample from mechanical loading, this replication is done by molding in OrmoStamp on glass; these replicas are used for optical inspection to determine the crack spacing. As a characterization of the depth and width of the cracks is highly facilitated when cleaving is enabled, a second replication is performed into a thin layer of SU-8 on Si; these second replica are analyzed by secondary electron microscopy of cross sections. They provide a realistic picture of the crack shape. It is found that the curing conditions affect the crack shape; a U-shape occurs with a low bulk modulus, whereas a V-shape occurs with a high bulk modulus. The parameters width, depth, and spacing are largely unaffected by the curing conditions. This work provides a background to understand the behavior of random cracks, which is, e.g., useful to design a system with controlled cracks that remain stable. An important finding is that as soon as cracking occurs at a certain strain, already a number of cracks develop, yet without any further stretching. The cracks behave independently from neighboring cracks. Upon further stretching, new cracks develop, and the crack width and depth remain similar. Therefore, these random cracks are stable, and sample failure does not occur up to a strain of at least 40%.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Insights from evaluation of surface cracks in surface-hardened polydimethylsiloxane by means of video analysis
    Schroeer, Miriam
    Scheer, Hella-Christin
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2021, 39 (01):
  • [2] Magnetic characterization of surface-hardened steel
    Zhang, Chongxue
    Bowler, Nicola
    Lo, Chester
    JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2009, 321 (23) : 3878 - 3887
  • [3] Resistance Welding of Surface-Hardened Steels.
    Uhlmann, Mathias
    ZIS-Mitteilungen, 1984, 26 (04): : 426 - 432
  • [4] A BEHAVIORAL MODEL FOR FRACTURE OF SURFACE-HARDENED COMPONENTS
    EBERT, LJ
    KROTINE, FT
    TROIANO, AR
    MECHANICAL ENGINEERING, 1965, 87 (10) : 73 - &
  • [5] Mesomechanics of interface in surface-hardened and coated materials
    Panin S.V.
    Smolin I.Yu.
    Balokhonov R.R.
    Antipina N.A.
    Romanova V.A.
    Moiseyenko D.D.
    Durakov V.G.
    Stefanov Yu.P.
    Bydzan A.Yu.
    Russian Physics Journal, 1999, 42 (3) : 247 - 263
  • [6] Detecting Method of Hardened Depth in Surface-Hardened Steel by Magnetic Field on Steel
    Gotoh, Yuji
    Onita, Shun
    Horino, Takashi
    Misaka, Yoshitaka
    IEEE TRANSACTIONS ON MAGNETICS, 2018, 54 (11)
  • [7] Fatigue Limit Prediction for Surface-Hardened Threaded Pieces
    Pis'marov, A. V.
    Kirpichev, V. A.
    Sazanov, V. P.
    Papich, L.
    JOURNAL OF MACHINERY MANUFACTURE AND RELIABILITY, 2022, 51 (SUPPL 1) : S60 - S67
  • [8] Fatigue Limit Prediction for Surface-Hardened Threaded Pieces
    A. V. Pis’marov
    V. A. Kirpichev
    V. P. Sazanov
    L. Papich
    Journal of Machinery Manufacture and Reliability, 2022, 51 : S60 - S67
  • [9] HOLOGRAPHIC AND FATIGUE INVESTIGATION OF THE LIFE OF SURFACE-HARDENED PARTS
    MOROZOV, BA
    SOVIET ENGINEERING RESEARCH, 1984, 4 (03): : 3 - 5
  • [10] FATIGUE CHARACTERISTICS OF LASER SURFACE-HARDENED CAST IRONS
    MOLIAN, PA
    JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1987, 109 (03): : 179 - 187