Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: Role of the heteroatom on the photovoltaic performance of perovskite solar cells

被引:15
|
作者
Xu, Bo [1 ]
Zhu, Hongwei [2 ,3 ]
Bao, Huayu [2 ,3 ]
Cao, Xiaohui [4 ]
Dong, Ying [1 ]
Zhang, Yuecheng [1 ]
Yin, Guohui [1 ]
Li, Xianggao [2 ,3 ]
Wang, Shirong [2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Tianjin 300130, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300354, Peoples R China
[3] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
[4] Guangdong Pharmaceut Univ, Sch Pharm, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Heteroatom effect; Hole-transporting materials; Bifunctional materials; Perovskite solar cells; Spiro-type materials; 19-PERCENT EFFICIENCY; LOW-COST; STABILITY; ALIGNMENT; DEFECTS; IMPACT;
D O I
10.1016/j.cej.2021.133371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hole-transporting materials (HTMs) play crucial roles in protecting the perovskite layer, promoting charge extraction, as well as controlling the cost of Perovskite solar cells (PSCs). In order to reduce PSCs cost and simplify PSCs preparation process, more and more attention has been paid to develop multifunctional HTMs. In this work, two novel spiro-fluorene/heterocycle cored bifunctional HTMs, denoted as SFHc-O and SFHc-S respectively, are designed and facilely synthesized. The two HTMs have similar molecular structures, energy levels and thermal properties, but show quite different PSCs performance. Significantly, the heteroatoms in freshly developed spiro cores are demonstrated to have large contributions to device performance. In particular, the sulfur atoms in SFHc-S display a positive impact on both the hole extraction/transport and the defect passivation, which ultimately endow corresponding device with much better performance. The PSC based on SFHc-S obtains a high efficiency excess 21.5% with negligible hysteresis. Moreover, the device with SFHc-S displays enhanced stability, compared to the reference device incorporating spiro-OMeTAD. This work paves a way to develop multifunctional spiro-HTMs for highly efficient and stable PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Molecular Engineering of Fluorene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells
    Jegorove, Aiste
    Momblona, Cristina
    Daskeviciene, Maryte
    Magomedov, Artiom
    Degutyte, Rimgaile
    Asiri, Abdullah M.
    Jankauskas, Vygintas
    Sutanto, Albertus Adrian
    Kanda, Hiroyuki
    Brooks, Keith
    Klipfel, Nadja
    Nazeeruddin, Mohammad Khaja
    Getautis, Vytautas
    SOLAR RRL, 2022, 6 (06)
  • [22] Di-Spiro-Based Hole-Transporting Materials for Highly Efficient Perovskite Solar Cells
    Gao, Ke
    Xu, Bo
    Hong, Chaoshen
    Shi, Xueliang
    Liu, Hongbin
    Li, Xiaosong
    Xie, Linghai
    Jen, Alex K-Y
    ADVANCED ENERGY MATERIALS, 2018, 8 (22)
  • [23] The Non-Innocent Role of Hole-Transporting Materials in Perovskite Solar Cells
    Lamberti, Francesco
    Schmitz, Fabian
    Chen, Wei
    He, Zhubing
    Gatti, Teresa
    SOLAR RRL, 2021, 5 (10)
  • [24] Performance and Stability Enhancement of Hole-Transporting Materials in Inverted Perovskite Solar Cells
    Zhan, Liqing
    Zhang, Leyuan
    Li, Yirong
    Cai, Hong
    Wu, Yongzhen
    ACS APPLIED ENERGY MATERIALS, 2025,
  • [25] Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells
    Karimi, E.
    Ghorashi, S. M. B.
    OPTIK, 2017, 130 : 650 - 658
  • [26] Hole-Transporting Materials for Perovskite-Sensitized Solar Cells
    Dhingra, Pankul
    Singh, Pallavi
    Rana, Prem Jyoti Singh
    Garg, Akshat
    Kar, Prasenjit
    ENERGY TECHNOLOGY, 2016, 4 (08) : 891 - 938
  • [27] Organic hole-transporting materials for efficient perovskite solar cells
    Zhao, Xiaojuan
    Wang, Mingkui
    MATERIALS TODAY ENERGY, 2018, 7 : 208 - 220
  • [28] Hole-Transporting Materials in Inverted Planar Perovskite Solar Cells
    Yan, Weibo
    Ye, Senyun
    Li, Yunlong
    Sun, Weihai
    Rao, Haixia
    Liu, Zhiwei
    Bian, Zuqiang
    Huang, Chunhui
    ADVANCED ENERGY MATERIALS, 2016, 6 (17)
  • [29] Development of simple hole-transporting materials for perovskite solar cells
    Namespetra, Andrew M.
    Hendsbee, Arthur D.
    Welch, Gregory C.
    Hill, Ian G.
    CANADIAN JOURNAL OF CHEMISTRY, 2016, 94 (04) : 352 - 359
  • [30] π-Conjugated Materials as the Hole-Transporting Layer in Perovskite Solar Cells
    Gheno, Alexandre
    Vedraine, Sylvain
    Ratier, Bernard
    Boucle, Johann
    METALS, 2016, 6 (01)