Bifunctional spiro-fluorene/heterocycle cored hole-transporting materials: Role of the heteroatom on the photovoltaic performance of perovskite solar cells

被引:15
|
作者
Xu, Bo [1 ]
Zhu, Hongwei [2 ,3 ]
Bao, Huayu [2 ,3 ]
Cao, Xiaohui [4 ]
Dong, Ying [1 ]
Zhang, Yuecheng [1 ]
Yin, Guohui [1 ]
Li, Xianggao [2 ,3 ]
Wang, Shirong [2 ,3 ]
机构
[1] Hebei Univ Technol, Sch Chem Engn & Technol, Tianjin 300130, Peoples R China
[2] Tianjin Univ, Sch Chem Engn & Technol, Tianjin 300354, Peoples R China
[3] Collaborat Innovat Ctr Chem Sci & Engn, Tianjin 300072, Peoples R China
[4] Guangdong Pharmaceut Univ, Sch Pharm, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Heteroatom effect; Hole-transporting materials; Bifunctional materials; Perovskite solar cells; Spiro-type materials; 19-PERCENT EFFICIENCY; LOW-COST; STABILITY; ALIGNMENT; DEFECTS; IMPACT;
D O I
10.1016/j.cej.2021.133371
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hole-transporting materials (HTMs) play crucial roles in protecting the perovskite layer, promoting charge extraction, as well as controlling the cost of Perovskite solar cells (PSCs). In order to reduce PSCs cost and simplify PSCs preparation process, more and more attention has been paid to develop multifunctional HTMs. In this work, two novel spiro-fluorene/heterocycle cored bifunctional HTMs, denoted as SFHc-O and SFHc-S respectively, are designed and facilely synthesized. The two HTMs have similar molecular structures, energy levels and thermal properties, but show quite different PSCs performance. Significantly, the heteroatoms in freshly developed spiro cores are demonstrated to have large contributions to device performance. In particular, the sulfur atoms in SFHc-S display a positive impact on both the hole extraction/transport and the defect passivation, which ultimately endow corresponding device with much better performance. The PSC based on SFHc-S obtains a high efficiency excess 21.5% with negligible hysteresis. Moreover, the device with SFHc-S displays enhanced stability, compared to the reference device incorporating spiro-OMeTAD. This work paves a way to develop multifunctional spiro-HTMs for highly efficient and stable PSCs.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Cyclopentadithiophene and Fluorene Spiro-Core-Based Hole-Transporting Materials for Perovskite Solar Cells
    Nakar, Rana
    Ramos, F. Javier
    Dalinot, Clement
    Marques, Pablo Simon
    Cabanetos, Clement
    Leriche, Philippe
    Sanguinet, Lionel
    Kobeissi, Marwan
    Blanchard, Philippe
    Faure-Vincent, Jerome
    Tran-Van, Francois
    Berton, Nicolas
    Rousset, Jean
    Schmaltz, Bruno
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (37): : 22767 - 22774
  • [2] Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells
    Yang Wang
    Tzu-Sen Su
    Han-Yan Tsai
    Tzu-Chien Wei
    Yun Chi
    Scientific Reports, 7
  • [3] Spiro-Phenylpyrazole/Fluorene as Hole-Transporting Material for Perovskite Solar Cells
    Wang, Yang
    Su, Tzu-Sen
    Tsai, Han-Yan
    Wei, Tzu-Chien
    Chi, Yun
    SCIENTIFIC REPORTS, 2017, 7
  • [4] Ionization of hole-transporting materials as a method for improving the photovoltaic performance of perovskite solar cells
    Tingare, Yogesh S.
    Lin, Chien-Hsiang
    Su, Chaochin
    Chou, Sheng-Chin
    Hsu, Ya-Chun
    Ghosh, Dibyajyoti
    Lai, Ning-Wei
    Lew, Xin-Rui
    Tretiak, Sergei
    Tsai, Hsinhan
    Nie, Wanyi
    Li, Wen-Ren
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (04) : 2140 - 2150
  • [5] Hole-Transporting Materials for Perovskite Solar Cells
    Liu, Fan
    Li, Qianqian
    Li, Zhen
    ASIAN JOURNAL OF ORGANIC CHEMISTRY, 2018, 7 (11) : 2182 - 2200
  • [6] Heteroatom engineering on spiro-type hole transporting materials for perovskite solar cells
    Zhang, Xianfu
    Liu, Xuepeng
    Wu, Nan
    Ghadari, Rahim
    Han, Mingyuan
    Wang, Ying
    Ding, Yong
    Cai, Molang
    Qu, Zuopeng
    Dai, Songyuan
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 19 - 26
  • [7] Pyrene-Cored Hole-Transporting Materials for Efficient and Stable Perovskite Solar Cells
    Shao, Jiang-Yang
    Zhong, Yu-Wu
    BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN, 2021, 94 (02) : 632 - 640
  • [8] Heteroatom engineering on spiro-type hole transporting materials for perovskite solar cells
    Xianfu Zhang
    Xuepeng Liu
    Nan Wu
    Rahim Ghadari
    Mingyuan Han
    Ying Wang
    Yong Ding
    Molang Cai
    Zuopeng Qu
    Songyuan Dai
    Journal of Energy Chemistry , 2022, (04) : 19 - 26
  • [9] Effects of Heteroatom and Extending the Conjugation on Linear Hole-Transporting Materials for Perovskite Solar Cells
    Wang, Ying
    Wu, Nan
    Zhang, Xianfu
    Liu, Xuepeng
    Han, Mingyuan
    Ghadari, Rahim
    Guo, Fuling
    Ding, Yong
    Cai, Molang
    Dai, Songyuan
    ACS APPLIED ENERGY MATERIALS, 2022, : 10553 - 10561
  • [10] Heteroatom Effect on Star-Shaped Hole-Transporting Materials for Perovskite Solar Cells
    Garcia-Benito, Ines
    Zimmermann, Iwan
    Urieta-Mora, Javier
    Arago, Juan
    Calbo, Joaquin
    Perles, Josefina
    Serrano, Alvaro
    Molina-Ontoria, Agustin
    Orti, Enrique
    Martin, Nazario
    Nazeeruddin, Mohammad Khaja
    ADVANCED FUNCTIONAL MATERIALS, 2018, 28 (31)