Comparing the corank of fine Selmer group and Selmer group of elliptic curves

被引:0
|
作者
Shekhar, Sudhanshu [1 ]
机构
[1] IIT Kanpur, Dept Math & Stat, Kanpur, Uttar Pradesh, India
关键词
IWASAWA THEORY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime, K-infinity be a pro-p, p-adic Lie extension of K = Q(mu(p)) of dimension two containing the cyclotomic Z(p)-extension K-infinity, of K and H be the Galois group of K-infinity /K-cyc. Let Lambda (H) be the Iwasawa algebra over H. Given an elliptic curve E defined over Q with good and supersingular reduction at p, we compare the Lambda(H)-corank of the fine Selmer group of E over K-infinity with the Iwasawa lambda-invariant of the +/--Selmer group of E over K-cyc. Using this, we find examples of elliptic curves defined over Q with good and supersingular reduction at p satisfying pseudo nullity conjecture over K-infinity
引用
收藏
页码:205 / 217
页数:13
相关论文
共 50 条
  • [41] Integral and modular representations attached to the Selmer group of an elliptic curve with complex multiplication
    Alexis Michel
    Mathematische Zeitschrift, 1999, 230 : 451 - 470
  • [42] p∞-Selmer groups and rational points on CM elliptic curves
    Burungale, Ashay
    Castella, Francesc
    Skinner, Christopher
    Tian, Ye
    ANNALES MATHEMATIQUES DU QUEBEC, 2022, 46 (02): : 325 - 346
  • [43] On the Plus and the Minus Selmer Groups for Elliptic Curves at Supersingular Primes
    Kitajima, Takahiro
    Otsuki, Rei
    TOKYO JOURNAL OF MATHEMATICS, 2018, 41 (01) : 273 - 303
  • [44] SELMER GROUPS OF ELLIPTIC CURVES OVER THE PGL(2) EXTENSION
    Ray, Jishnu
    Sujatha, R.
    NAGOYA MATHEMATICAL JOURNAL, 2022, 248 : 922 - 938
  • [45] On several families of elliptic curves with arbitrary large Selmer groups
    Fei Li
    DeRong Qiu
    Science China Mathematics, 2010, 53 : 2329 - 2340
  • [46] On 2-Selmer ranks of quadratic twists of elliptic curves
    Yu, Myungjun
    MATHEMATICAL RESEARCH LETTERS, 2017, 24 (05) : 1565 - 1583
  • [47] 2-SELMER GROUPS OF QUADRATIC TWISTS OF ELLIPTIC CURVES
    Boxer, George
    Diao, Peter
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (06) : 1969 - 1978
  • [48] SELMER GROUP OF AN ELLIPTICAL CURVE WITH COMPLEX MULTIPLICATION
    PERRINRIOU, B
    COMPOSITIO MATHEMATICA, 1981, 43 (03) : 387 - 417
  • [49] p-SELMER GROUP AND MODULAR SYMBOLS
    Sakamoto, Ryotaro
    DOCUMENTA MATHEMATICA, 2022, 27 : 1891 - 1922
  • [50] Size of the 2-Selmer groups for Heronian elliptic curves
    Chakraborty, Debopam
    Ghale, Vinodkumar
    EUROPEAN JOURNAL OF MATHEMATICS, 2023, 9 (04)