A continually online trained neurocontroller for excitation and turbine control of a turbogenerator

被引:80
|
作者
Venayagamoorthy, GK [1 ]
Harley, RG
机构
[1] ML Sultan Technikon, Durban, South Africa
[2] Univ Natal, ZA-4001 Durban, South Africa
[3] Georgia Inst Technol, Atlanta, GA 30332 USA
基金
新加坡国家研究基金会;
关键词
continual online training; neurocontroller; neuroidentifier; turbogenerator control;
D O I
10.1109/60.937206
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The increasing complexity of the modern power grid highlights the need for advanced modeling and control techniques for effective control of turbogenerators. This paper presents the design of a Continually Online Trained (COT) Artificial Neural Network (ANN) based controller for a turbogenerator connected to the infinite bus through a transmission line. Two COT ANNs are used for the implementation; one ANN, the neuroidentifter, to identify the complex nonlinear dynamics of the power system and the other ANN, the neurocontroller, to control the turbogenerator. The neurocontroller replaces the conventional automatic voltage regulator (AVR) and turbine governor. Simulation and practical implementation results are presented to show that COT neurocontrollers can control turbogenerators under steady state as well as transient conditions.
引用
收藏
页码:261 / 269
页数:9
相关论文
共 50 条
  • [41] Research On Active Power Online Optimal Control for Hydrostatic Transmission Wind Turbine
    Wei, Gao
    Lijuan, Chen
    Chao, Ai
    Pengfei, Zheng
    Xuan, Wu
    IEEE ACCESS, 2022, 10 : 54263 - 54275
  • [42] Optimal excitation controller design for wind turbine generator using H∞ control technique
    Boglou A.K.
    Bandekas D.V.
    Pappas D.I.
    Potolias C.
    Journal of Engineering Science and Technology Review, 2011, 4 (01) : 43 - 49
  • [43] Novel Adaptive Control Schemes Based on Online-Trained Fuzzy Neural Networks for the STATCOM
    Ma, Tsao-Tsung
    INTERNATIONAL REVIEW OF ELECTRICAL ENGINEERING-IREE, 2010, 5 (04): : 1648 - 1654
  • [44] Study on the Control Strategy of AC Excitation of Variable Water-Head Pelton Turbine
    He, Xiaorong
    Guo, Yan
    He, Juan
    Liu, Wei
    INTERNATIONAL CONFERENCE ON ELECTRICAL, CONTROL AND AUTOMATION (ICECA 2014), 2014, : 869 - 876
  • [45] Nonlinear speed control of a dc motor drive system with online trained recurrent neural network
    Nouri, Khaled
    Dhaouadi, Rached
    Brajek, Naceur Benhadj
    9TH IEEE INTERNATIONAL WORKSHOP ON ADVANCED MOTION CONTROL, VOLS 1 AND 2, PROCEEDINGS, 2006, : 704 - +
  • [46] Self-excitation system for control of wind turbine driven induction generator using direct torque control
    Premalatha, K.
    Vasantharathna, S.
    Dhivyaah, T.
    JOURNAL OF VIBRATION AND CONTROL, 2016, 22 (03) : 736 - 755
  • [47] Lyapunov-based training algorithm applied to a continually on line-trained ANN used in the current-loop control of a single-phase switched rectifier
    Viola, J. C.
    Restrepo, J. A.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2008, 22 (06) : 609 - 625
  • [48] Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator
    Hernandez-Alvarado, Rodrigo
    Rodriguez-Abreo, Omar
    Manuel Garcia-Guendulain, Juan
    Hernandez-Diaz, Teresa
    MICROMACHINES, 2022, 13 (05)
  • [49] Robust multivariable sliding mode control design for generator excitation of marine turbine in multimachine configuration
    Dansoko, M.
    Nkvvawo, H.
    Diourte, B.
    Floret, F.
    Goma, R.
    Kenne, G.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2014, 63 : 423 - 428
  • [50] EFFECTS OF PRIME-MOVER AND EXCITATION CONTROL ON STABILITY OF LARGE STEAM-TURBINE GENERATORS
    DINELEY, JL
    FENWICK, PJ
    IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1974, PA93 (05): : 1613 - 1623