Anyon braiding on a fractal lattice with a local Hamiltonian

被引:12
|
作者
Manna, Sourav [1 ,2 ]
Duncan, Callum W. [1 ,3 ,4 ]
Weidner, Carrie A. [5 ]
Sherson, Jacob F. [5 ]
Nielsen, Anne E. B. [1 ,5 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Weizmann Inst Sci, Dept Condensed Matter Phys, IL-7610001 Rehovot, Israel
[3] SUPA, Dept Phys, Glasgow G4 0NG, Lanark, Scotland
[4] Univ Strathclyde, Glasgow G4 0NG, Lanark, Scotland
[5] Aarhus Univ, Dept Phys & Astron, DK-8000 Aarhus C, Denmark
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1103/PhysRevA.105.L021302
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
There is a growing interest in searching for topology in fractal dimensions with the aim of finding different properties and advantages compared to the integer dimensional case. Here we construct a local Hamiltonian on a fractal lattice whose ground state exhibits topological braiding properties. The fractal lattice is obtained from a second-generation Sierpinski carpet with Hausdorff dimension 1.89. We use local potentials to trap and exchange anyons in the model, and the numerically obtained results for the exchange statistics of the anyons are close to the ideal statistics for quasiholes in a bosonic Laughlin state at half filling. For the considered system size, the energy gap is about three times larger for the fractal lattice than for a two-dimensional square lattice, and we find that the braiding results obtained on the fractal lattice are more robust against disorder. We propose a scheme to implement both fractal lattices and our proposed local Hamiltonian with ultracold atoms in optical lattices.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] ANYON IN AN EXTERNAL ELECTROMAGNETIC-FIELD - HAMILTONIAN AND LAGRANGIAN FORMULATIONS - COMMENT
    JACKIW, R
    NAIR, VP
    PHYSICAL REVIEW LETTERS, 1994, 73 (14) : 2007 - 2008
  • [32] FRACTAL DIAGRAMS FOR HAMILTONIAN STOCHASTICITY
    SCHMIDT, G
    BIALEK, J
    PHYSICA D, 1982, 5 (2-3): : 397 - 404
  • [33] LOCAL MAGNETIC-FIELDS IN AN ANYON SUPERCONDUCTOR
    HALPERIN, BI
    PHYSICAL REVIEW B, 1992, 45 (10): : 5504 - 5516
  • [34] Hamiltonian lattice dynamics
    Paleari, Simone
    Penati, Tiziano
    MATHEMATICS IN ENGINEERING, 2019, 1 (04): : 881 - 887
  • [35] THE WEAK HAMILTONIAN ON THE LATTICE
    MAIANI, L
    MARTINELLI, G
    ROSSI, GC
    TESTA, M
    PHYSICS LETTERS B, 1986, 176 (3-4) : 445 - 448
  • [36] DIRAC HAMILTONIAN ON A LATTICE
    CHAKRABARTI, J
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1995, 10 (14): : 2087 - 2095
  • [37] Dirac Hamiltonian on a Lattice
    Int J Mod Phys A, 14 (2087):
  • [38] Unconventional fusion and braiding of topological defects in a lattice model
    Teo, Jeffrey C. Y.
    Roy, Abhishek
    Chen, Xiao
    PHYSICAL REVIEW B, 2014, 90 (11)
  • [39] Braiding properties of worldline configurations in hardcore lattice bosons
    Fabio Lingua
    Wei Wang
    Liana Shpani
    Barbara Capogrosso-Sansone
    Scientific Reports, 12
  • [40] Braiding properties of worldline configurations in hardcore lattice bosons
    Lingua, Fabio
    Wang, Wei
    Shpani, Liana
    Capogrosso-Sansone, Barbara
    SCIENTIFIC REPORTS, 2022, 12 (01)