On order-preserving representations

被引:1
|
作者
Ben Simon, G. [1 ]
Burger, M. [2 ]
Hartnick, T. [3 ]
Iozzi, A. [2 ]
Wienhard, A. [4 ,5 ]
机构
[1] ORT Braude Coll, Dept Math, POB 78, IL-2161002 Karmiel, Israel
[2] ETH, Dept Math, Ramistr 101, CH-8092 Zurich, Switzerland
[3] Technion Israel Inst Technol, Dept Math, IL-32000 Haifa, Israel
[4] Heidelberg Univ, Math Inst, D-69120 Heidelberg, Germany
[5] HITS gGmbH, Heidelberg Inst Theoret Studies, Schloss Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
基金
瑞士国家科学基金会; 欧洲研究理事会; 美国国家科学基金会;
关键词
WINDING NUMBERS; INVARIANT; SURFACES;
D O I
10.1112/jlms/jdw048
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce order-preserving representations of fundamental groups of surfaces into Lie groups with bi-invariant orders. By relating order-preserving representations to weakly maximal representations, previously introduced by the authors, we show that order-preserving representations into Lie groups of Hermitian type are faithful with discrete image, and that the set of order-preserving representations is closed in the representation variety. For Lie groups of Hermitian type whose associated symmetric space is of tube type, we give a geometric characterization of these representations in terms of the causal structure on the Shilov boundary.
引用
收藏
页码:525 / 544
页数:20
相关论文
共 50 条