Sleep Onset Detection based on Time-Varying Autoregressive Models with Particle Filter Estimation

被引:0
|
作者
Chaparro-Vargas, Ramiro [1 ]
Dissayanaka, P. Chamila [1 ]
Penzel, Thomas [2 ]
Ahmed, Beena [3 ]
Cvetkovic, Dean [1 ]
机构
[1] RMIT Univ, Sch Elect & Comp Engn, Melbourne, Vic 3000, Australia
[2] Charite, Interdisciplinary Ctr Sleep Med, D-10117 Berlin, Germany
[3] Texas A&M Univ, Dept Elect & Comp Engn, Doha, Qatar
来源
2014 IEEE CONFERENCE ON BIOMEDICAL ENGINEERING AND SCIENCES (IECBES) | 2014年
关键词
CLASSIFICATION;
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
In this paper, we introduce a computer-assisted approach for the characterisation of sleep onset periods. The processing of polysomnographic (PSG) recordings involves the modelling of Time-Varying Autoregressive Moving Average (TVARMA) processes with recursive particle filtering. The feature set engages the computation of electroencephalogram (EEG) frequency bands delta, theta, alpha, zeta, beta, mean amplitude of electrooculogram (EOG) and electromyogram (EMG) signals. This is subsequently transferred to an ensemble classifier to detect Wake (W), non-REM1 (N1) and non-REM2 (N2) sleep stages. As a result, novel contributions in terms of non-Gaussian modelling of biosignal processes, approximation to PSG distributions with particle filtering and time-frequency analysis by complex Morlet wavelets within sleep staging, are discussed. The findings revealed performance metrics achieving in the best cases 93 : 18% accuracy, 6.82% error and 100% sensitivity/ specificity rates.
引用
收藏
页码:436 / 441
页数:6
相关论文
共 50 条
  • [31] Time-varying credibility for frequency risk models:: estimation and tests for autoregressive specifications on the random effects
    Bolancé, C
    Guillén, M
    Pinquet, J
    INSURANCE MATHEMATICS & ECONOMICS, 2003, 33 (02): : 273 - 282
  • [32] Time-varying autoregressive (TVAR) models for multiple radar observations
    Abramovich, Yuri I.
    Spencer, Nicholas K.
    Turley, Michael D. E.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2007, 55 (04) : 1298 - 1311
  • [33] Fast Time-Varying Sparse Channel Estimation Based on Kalman Filter
    Yuan W.
    Wang J.
    2018, Science Press (53): : 835 - 841
  • [34] Empirical likelihood inference in autoregressive models with time-varying variances
    Han, Yu
    Zhang, Chunming
    STATISTICAL THEORY AND RELATED FIELDS, 2022, 6 (02) : 129 - 138
  • [35] Empirical likelihood inference for time-varying coefficient autoregressive models
    Zhang, Xilin
    Fan, Guoliang
    Xu, Hongxia
    RANDOM MATRICES-THEORY AND APPLICATIONS, 2024, 13 (04)
  • [36] Estimation of Time-Varying Single Particle Tracking Models using Local Likelihood
    Godoy, Boris I.
    Vickers, Nicholas A.
    Andersson, Sean B.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 569A - 569A
  • [37] SEGMENTATION OF EEG DURING SLEEP USING TIME-VARYING AUTOREGRESSIVE MODELING
    AMIR, N
    GATH, I
    BIOLOGICAL CYBERNETICS, 1989, 61 (06) : 447 - 455
  • [38] Wavelet based time-varying vector autoregressive modelling
    Sato, Joao R.
    Morettin, Pedro A.
    Arantes, Paula R.
    Amaro, Edson, Jr.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2007, 51 (12) : 5847 - 5866
  • [39] Probabilistic State Estimation Under Varying Loading States via the Integration of Time-Varying Autoregressive and Gaussian Process Models
    Amer, Ahmad
    Ahmed, Shabbir
    Kopsaftopoulos, Fotis
    STRUCTURAL HEALTH MONITORING-AN INTERNATIONAL JOURNAL, 2024, 23 (06): : 3545 - 3580
  • [40] Wavelet estimation in time-varying coefficient models
    Xingcai Zhou
    Beibei Ni
    Chunhua Zhu
    Lithuanian Mathematical Journal, 2019, 59 : 276 - 293