Constant mean curvature surfaces and mean curvature flow with non-zero Neumann boundary conditions on strictly convex domains

被引:49
|
作者
Ma, Xi-Nan [1 ]
Wang, Pei-He [2 ]
Wei, Wei [1 ]
机构
[1] Univ Sci & Technol China, Sch Math Sci, Hefei 230026, Anhui, Peoples R China
[2] Qufu Normal Univ, Sch Math Sci, Qufu 273165, Shandong, Peoples R China
关键词
Neumann boundary; Asymptotic behavior; Mean curvature equation; Additive eigenvalue problem; HAMILTON-JACOBI EQUATIONS; EXISTENCE;
D O I
10.1016/j.jfa.2017.10.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study nonparametric surfaces over strictly convex bounded domains in R-n, which are evolving by the mean curvature flow with Neumann boundary value. We prove that solutions converge to the ones moving only by translation. And we will prove the existence and uniqueness of the constant mean curvature equation with Neumann boundary value on strictly convex bounded domains. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:252 / 277
页数:26
相关论文
共 50 条
  • [21] On regular algebraic hypersurfaces with non-zero constant mean curvature in Euclidean spaces
    Barreto, Alexandre Paiva
    Fontenele, Francisco
    Hartmann, Luiz
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2022, 152 (04) : 1081 - 1088
  • [22] On curvature estimates for constant mean curvature surfaces
    Tinaglia, Giuseppe
    GEOMETRIC ANALYSIS: PARTIAL DIFFERENTIAL EQUATIONS AND SURFACES, 2012, 570 : 165 - 185
  • [23] CURVATURE ESTIMATES FOR CONSTANT MEAN CURVATURE SURFACES
    Meeks, William H., III
    Tinaglia, Giuseppe
    DUKE MATHEMATICAL JOURNAL, 2019, 168 (16) : 3057 - 3102
  • [24] SURFACES WITH CONSTANT MEAN CURVATURE
    HILDERBR.S
    MATHEMATISCHE ZEITSCHRIFT, 1969, 112 (02) : 107 - &
  • [25] SURFACES OF CONSTANT MEAN CURVATURE
    WOLF, JA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1966, 17 (05) : 1103 - &
  • [26] Surfaces with constant mean curvature
    Perdomol, Oscar M.
    BOLETIN DE MATEMATICAS, 2011, 18 (02): : 157 - 182
  • [27] Constant mean curvature surfaces
    Meeks, William H., III
    Perez, Joaquin
    Tinaglia, Giuseppe
    ADVANCES IN GEOMETRY AND MATHEMATICAL PHYSICS, 2016, 21 : 179 - +
  • [28] CONSTANT MEAN CURVATURE SURFACES IN SOL WITH NON-EMPTY BOUNDARY
    Lopez, Rafael
    HOUSTON JOURNAL OF MATHEMATICS, 2012, 38 (04): : 1091 - 1105
  • [29] On representation of boundary integrals involving the mean curvature for mean-convex domains
    Giga, Yoshikazu
    Pisante, Giovanni
    GEOMETRIC PARTIAL DIFFERENTIAL EQUATIONS: PROCEEDINGS, 2013, 15 : 171 - 187
  • [30] Constant mean curvature surfaces with boundary in hyperbolic space
    López, R
    MONATSHEFTE FUR MATHEMATIK, 1999, 127 (02): : 155 - 169