Low-Resource Neural Machine Translation with Neural Episodic Control

被引:0
|
作者
Wu, Nier [1 ]
Hou, Hongxu [1 ]
Sun, Shuo [1 ]
Zheng, Wei [1 ]
机构
[1] Inner Mongolia Univ, Coll Comp Sci, Coll Software, Hohhot, Peoples R China
关键词
Reinforcement Learning; Machine Translation; DND; Episodic Control; Low-resource;
D O I
10.1109/IJCNN52387.2021.9533677
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Reinforcement Learning (RL) has been proved to alleviate metric inconsistency and exposure deviation in training-evaluation of neural machine translation (NMT), but the sample efficiency is limited by sampling methods (Temporal-Difference (TD) or Monte-Carlo (MC)), and still cannot compensate for the inefficient non-zero rewards caused by insufficient data sets. In addition, RL rewards can only be effective when the model parameters are basically determined. Therefore, we proposed episodic control reinforcement learning method, which obtains the model with basically determined parameters through the knowledge transfer, and records the historical action trajectory by introducing semi-tabular differentiable neural dictionary (DND), the model can quickly approximate the real state-value according to samples reward when updating policy. We verified on CCMT2019 Mongolian-Chinese (Mo-Zh), Tibetan-Chinese (Ti-Zh), and Uyghur-Chinese (Ug-Zh) tasks, and the results showed that the quality was significantly improved, which fully demonstrated the effectiveness of the method.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Understanding and Improving Low-Resource Neural Machine Translation with Shallow Features
    Sun, Yanming
    Liu, Xuebo
    Wong, Derek F.
    Lin, Yuchu
    Li, Bei
    Zhan, Runzhe
    Chao, Lidia S.
    Zhang, Min
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT III, NLPCC 2024, 2025, 15361 : 227 - 239
  • [22] Incremental Domain Adaptation for Neural Machine Translation in Low-Resource Settings
    Kalimuthu, Marimuthu
    Barz, Michael
    Sonntag, Daniel
    FOURTH ARABIC NATURAL LANGUAGE PROCESSING WORKSHOP (WANLP 2019), 2019, : 1 - 10
  • [23] Benchmarking Neural and Statistical Machine Translation on Low-Resource African Languages
    Duh, Kevin
    McNamee, Paul
    Post, Matt
    Thompson, Brian
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 2667 - 2675
  • [24] An Analysis of Massively Multilingual Neural Machine Translation for Low-Resource Languages
    Mueller, Aaron
    Nicolai, Garrett
    McCarthy, Arya D.
    Lewis, Dylan
    Wu, Winston
    Yarowsky, David
    PROCEEDINGS OF THE 12TH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION (LREC 2020), 2020, : 3710 - 3718
  • [25] Towards a Low-Resource Neural Machine Translation for Indigenous Languages in Canada
    Ngoc Tan Le
    Sadat, Fatiha
    TRAITEMENT AUTOMATIQUE DES LANGUES, 2021, 62 (03): : 39 - 63
  • [26] Regressing Word and Sentence Embeddings for Low-Resource Neural Machine Translation
    Unanue I.J.
    Borzeshi E.Z.
    Piccardi M.
    IEEE Transactions on Artificial Intelligence, 2023, 4 (03): : 450 - 463
  • [27] Neural machine translation for low-resource languages without parallel corpora
    Karakanta, Alina
    Dehdari, Jon
    van Genabith, Josef
    MACHINE TRANSLATION, 2018, 32 (1-2) : 167 - 189
  • [28] Efficient Low-Resource Neural Machine Translation with Reread and Feedback Mechanism
    Yu, Zhiqiang
    Yu, Zhengtao
    Guo, Junjun
    Huang, Yuxin
    Wen, Yonghua
    ACM TRANSACTIONS ON ASIAN AND LOW-RESOURCE LANGUAGE INFORMATION PROCESSING, 2020, 19 (03)
  • [29] Hierarchical Transfer Learning Architecture for Low-Resource Neural Machine Translation
    Luo, Gongxu
    Yang, Yating
    Yuan, Yang
    Chen, Zhanheng
    Ainiwaer, Aizimaiti
    IEEE ACCESS, 2019, 7 : 154157 - 154166
  • [30] Enhancing distant low-resource neural machine translation with semantic pivot
    Zhu, Enchang
    Huang, Yuxin
    Xian, Yantuan
    Zhu, Junguo
    Gao, Minghu
    Yu, Zhiqiang
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 116 : 633 - 643