Global differential invariants of nondegenerate hypersurfaces

被引:0
|
作者
Sagiroglu, Yasemin [1 ]
Gozutok, Ugur [1 ]
机构
[1] Karadeniz Tech Univ, Fac Sci, Dept Math, Trabzon, Turkey
关键词
Hypersurface; Bonnet?s theorem; differential invariant;
D O I
10.55730/1300-0098.3264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {gij(x)}ni,j =1 and {Lij(x)}ni,j =1 be the sets of all coefficients of the first and second fundamental forms of a hypersurface x in Rn+1. For a connected open subset U C Rn and a C???-mapping x : U + Rn+1 the hypersurface x is said to be d-nondegenerate, where d E {1, 2, ... n}, if Ldd(x) =?? 0 for all u E U. Let M(n) = {F : Rn ???+ Rn | Fx = gx + b, g E O(n), b E Rn}, where O(n) is the group of all real orthogonal n x n-matrices, and SM(n) = {F E M(n) | g E SO(n)}, where SO(n) = {g E O(n) | det(g) = 1}. In the present paper, it is proved that the set {gij(x), Ldj(x), i, j = 1,2,. .., n} is a complete system of a SM(n + 1)-invariants of a d-non-degenerate hypersurface in Rn+1. A similar result has obtained for the group M(n + 1).
引用
收藏
页码:2208 / 2230
页数:24
相关论文
共 50 条