Global differential invariants of nondegenerate hypersurfaces

被引:0
|
作者
Sagiroglu, Yasemin [1 ]
Gozutok, Ugur [1 ]
机构
[1] Karadeniz Tech Univ, Fac Sci, Dept Math, Trabzon, Turkey
关键词
Hypersurface; Bonnet?s theorem; differential invariant;
D O I
10.55730/1300-0098.3264
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let {gij(x)}ni,j =1 and {Lij(x)}ni,j =1 be the sets of all coefficients of the first and second fundamental forms of a hypersurface x in Rn+1. For a connected open subset U C Rn and a C???-mapping x : U + Rn+1 the hypersurface x is said to be d-nondegenerate, where d E {1, 2, ... n}, if Ldd(x) =?? 0 for all u E U. Let M(n) = {F : Rn ???+ Rn | Fx = gx + b, g E O(n), b E Rn}, where O(n) is the group of all real orthogonal n x n-matrices, and SM(n) = {F E M(n) | g E SO(n)}, where SO(n) = {g E O(n) | det(g) = 1}. In the present paper, it is proved that the set {gij(x), Ldj(x), i, j = 1,2,. .., n} is a complete system of a SM(n + 1)-invariants of a d-non-degenerate hypersurface in Rn+1. A similar result has obtained for the group M(n + 1).
引用
收藏
页码:2208 / 2230
页数:24
相关论文
共 50 条
  • [1] Normal Forms, Moving Frames, and Differential Invariants for Nondegenerate Hypersurfaces in C2
    Olver, Peter J.
    Sabzevari, Masoud
    Valiquette, Francis
    JOURNAL OF GEOMETRIC ANALYSIS, 2023, 33 (06)
  • [2] Invariants of hypersurfaces and logarithmic differential forms
    Cynk, Slawomir
    Rams, Slawomir
    CONTRIBUTIONS TO ALGEBRAIC GEOMETRY: IMPANGA LECTURE NOTES, 2012, : 189 - 213
  • [3] ON DIFFERENTIAL INVARIANTS OF HYPERPLANE SYSTEMS ON NONDEGENERATE EQUIVARIANT EMBEDDINGS OF HOMOGENEOUS SPACES
    Hong, Jaehyun
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2015, 30 (03): : 253 - 267
  • [4] KNOT INVARIANTS AS NONDEGENERATE QUANTUM GEOMETRIES
    BRUGMANN, B
    GAMBINI, R
    PULLIN, J
    PHYSICAL REVIEW LETTERS, 1992, 68 (04) : 431 - 434
  • [5] Automorphisms of 2-Nondegenerate Hypersurfaces in ℂ3
    A. E. Ershova
    Mathematical Notes, 2001, 69 : 188 - 195
  • [6] Invariants and rigidity of projective hypersurfaces
    Sticlaru, Gabriel
    BULLETIN MATHEMATIQUE DE LA SOCIETE DES SCIENCES MATHEMATIQUES DE ROUMANIE, 2015, 58 (01): : 103 - 116
  • [7] Topological Invariants for Closed Hypersurfaces
    Icaro Gonçalves
    Eduardo Longa
    Bulletin of the Brazilian Mathematical Society, New Series, 2019, 50 : 533 - 542
  • [8] Topological Invariants for Closed Hypersurfaces
    Goncalves, Icaro
    Longa, Eduardo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2019, 50 (02): : 533 - 542
  • [9] AFFINE INVARIANTS OF A PAIR OF HYPERSURFACES
    HSIUNG, CC
    AMERICAN JOURNAL OF MATHEMATICS, 1949, 71 (04) : 879 - 882
  • [10] Computing zeta functions of nondegenerate hypersurfaces with few monomials
    Sperber, Steven
    Voight, John
    LMS JOURNAL OF COMPUTATION AND MATHEMATICS, 2013, 16 : 9 - +