Subgradient projection methods extended to monotone bilevel equilibrium problems in Hilbert spaces

被引:11
|
作者
Anh, Pham Ngoc [1 ]
Tu, Ho Phi [2 ]
机构
[1] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[2] Hai Phong Univ, Dept Math, Haiphong, Vietnam
关键词
Pseudomonotone; Bilevel equilibrium problem; Subgradient projection method; Equilibrium constraints; STRONG-CONVERGENCE THEOREM; EXTRAGRADIENT ALGORITHM; DESCENT METHOD;
D O I
10.1007/s11075-020-00878-w
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, by basing on the inexact subgradient and projection methods presented by Santos et al. (Comput. Appl. Math. 30: 91-107, 2011), we develop subgradient projection methods for solving strongly monotone equilibrium problems with pseudomonotone equilibrium constraints. The problem usually is called monotone bilevel equilibrium problems. We show that this problem can be solved by a simple and explicit subgradient method. The strong convergence for the proposed algorithms to the solution is guaranteed under certain assumptions in a real Hilbert space. Numerical illustrations are given to demonstrate the performances of the algorithms.
引用
收藏
页码:55 / 74
页数:20
相关论文
共 50 条
  • [21] MANN-TYPE INERTIAL SUBGRADIENT EXTRAGRADIENT METHODS FOR BILEVEL EQUILIBRIUM PROBLEMS
    Ceng, Lu-Chuan
    Zhu, Li -Jun
    Yao, Zhangsong
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2022, 84 (04): : 19 - 32
  • [22] MANN-TYPE INERTIAL SUBGRADIENT EXTRAGRADIENT METHODS FOR BILEVEL EQUILIBRIUM PROBLEMS
    Ceng, Lu-Chuan
    Zhu, Li-Jun
    Yao, Zhangsong
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2022, 84 (04): : 19 - 32
  • [23] MANN-TYPE INERTIAL SUBGRADIENT EXTRAGRADIENT METHODS FOR BILEVEL EQUILIBRIUM PROBLEMS
    Ceng, Lu-Chuan
    Zhu, Li-Jun
    Yao, Zhangsong
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2022, 84 (04): : 19 - 32
  • [24] Subgradient Extragradient Methods for Equilibrium Problems and Fixed Point Problems in Hilbert Space
    Lulu Yin
    Hongwei Liu
    Journal of Harbin Institute of Technology(New Series), 2022, 29 (01) : 15 - 23
  • [25] The Ishikawa Subgradient Extragradient Method for Equilibrium Problems and Fixed Point Problems in Hilbert Spaces
    Duc, Manh Hy
    Thanh, Ha Nguyen Thi
    Huyen, Thanh Tran Thi
    Dinh, Bui Van
    NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2020, 41 (09) : 1065 - 1088
  • [26] Regularization iterative method of bilevel form for equilibrium problems in Hilbert spaces
    Dang Van Hieu
    Le Dung Muu
    Pham Kim Quy
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (10) : 6143 - 6164
  • [27] A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications
    Le Quang Thuy
    Trinh Ngoc Hai
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2017, 175 (02) : 411 - 431
  • [28] A Projected Subgradient Algorithm for Bilevel Equilibrium Problems and Applications
    Le Quang Thuy
    Trinh Ngoc Hai
    Journal of Optimization Theory and Applications, 2017, 175 : 411 - 431
  • [29] The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space
    Jun Yang
    Hongwei Liu
    Optimization Letters, 2020, 14 : 1803 - 1816
  • [30] The subgradient extragradient method extended to pseudomonotone equilibrium problems and fixed point problems in Hilbert space
    Yang, Jun
    Liu, Hongwei
    OPTIMIZATION LETTERS, 2020, 14 (07) : 1803 - 1816