Isolated Handwritten Balinese Character Recognition from Palm Leaf Manuscripts with Residual Convolutional Neural Networks

被引:0
|
作者
Arsa, Dewa Made Sri [1 ]
Putri, Gusti Agung Ayu [1 ]
Zen, Remmy [2 ]
Bressan, Stephane [2 ]
机构
[1] Univ Udayana, Dept Informat Technol, Kuta Selatan, Badung, Indonesia
[2] Natl Univ Singapore, Sch Comp, Singapore, Singapore
来源
2020 12TH INTERNATIONAL CONFERENCE ON KNOWLEDGE AND SYSTEMS ENGINEERING (IEEE KSE 2020) | 2020年
关键词
handwritten character recognition; classification; deep learning; convolutional neural network;
D O I
10.1109/kse50997.2020.9287584
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The versatility of machine learning tools creates new opportunities to preserve cultural heritage and promote cultural diversity. One important task for such preservation and promotion is the processing of local languages, of which the digitisation of traditional document written in the local scripts is a fundamental building block. We are hereby concerned with the recognition of isolated handwritten Balinese characters from palm leaf manuscripts. We propose a method based on a residual convolutional neural network to recognise handwritten characters written on palm leaf manuscripts in the Balinese script. The proposed method essentially consists of the combination of identity and convolution blocks. A comparative empirical performance evaluation, using a publicly available data set, shows that the proposed method improves on existing alternatives.
引用
收藏
页码:224 / 229
页数:6
相关论文
共 50 条
  • [21] Handwritten Tamil Character Recognition using Convolutional Neural Network
    Gnanasivam, P.
    Bharath, G.
    Karthikeyan, V
    Dhivya, V
    2021 SIXTH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, SIGNAL PROCESSING AND NETWORKING (WISPNET), 2021, : 84 - 88
  • [22] Malayalam Handwritten Character Recognition Using Convolutional Neural Network
    Nair, Pranav P.
    James, Ajay
    Saravanan, C.
    PROCEEDINGS OF THE 2017 INTERNATIONAL CONFERENCE ON INVENTIVE COMMUNICATION AND COMPUTATIONAL TECHNOLOGIES (ICICCT), 2017, : 278 - 281
  • [23] Handwritten Devanagari Character Recognition using Convolutional Neural Network
    Mohite, Aarati
    Shelke, Sushama
    2018 4TH INTERNATIONAL CONFERENCE FOR CONVERGENCE IN TECHNOLOGY (I2CT), 2018,
  • [24] Persian Handwritten Character Recognition Using Convolutional Neural Network
    Sarvaramini, Farzin
    Nasrollahzadeh, Alireza
    Soryani, Mohsen
    26TH IRANIAN CONFERENCE ON ELECTRICAL ENGINEERING (ICEE 2018), 2018, : 1676 - 1680
  • [25] Persian Handwritten Character Recognition Using Convolutional Neural Network
    Roohi, Samad
    Alizadehashrafi, Behnam
    2017 10TH IRANIAN CONFERENCE ON MACHINE VISION AND IMAGE PROCESSING (MVIP), 2017, : 247 - 251
  • [26] Recognition of Handwritten Devanagari Character using Convolutional Neural Network
    Dokare, Indu
    Gadge, Siddhesh
    Kharde, Kedar
    Bhere, Siddhesh
    Jadhav, Rohit
    ICSPC'21: 2021 3RD INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING AND COMMUNICATION (ICPSC), 2021, : 353 - 359
  • [27] Handwritten Character Recognition Based on Improved Convolutional Neural Network
    Xue, Yu
    Tong, Yiling
    Yuan, Ziming
    Su, Shoubao
    Slowik, Adam
    Toglaw, Sam
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2021, 29 (02): : 497 - 509
  • [28] Handwritten Chinese Character Recognition Based on Residual Neural Network
    Li, Min
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 1715 - 1719
  • [29] Handwritten character recognition based on hybrid neural networks
    Wang, P
    Sun, GM
    Zhang, XM
    NEURAL NETWORK AND DISTRIBUTED PROCESSING, 2001, 4555 : 65 - 70
  • [30] Deep Neural Networks for Handwritten Chinese Character Recognition
    Maidana, Renan G.
    Monteiro, Juarez
    Granada, Roger
    Amory, Alexandre M.
    Barros, Rodrigo C.
    2017 6TH BRAZILIAN CONFERENCE ON INTELLIGENT SYSTEMS (BRACIS), 2017, : 192 - 197