A Fermi-degenerate three-dimensional optical lattice clock

被引:332
|
作者
Campbell, S. L. [1 ,2 ,3 ]
Hutson, R. B. [1 ,2 ,3 ]
Marti, G. E. [1 ,2 ]
Goban, A. [1 ,2 ]
Oppong, N. Darkwah [1 ,2 ,4 ]
McNally, R. L. [1 ,2 ,3 ,5 ]
Sonderhouse, L. [1 ,2 ,3 ]
Robinson, J. M. [1 ,2 ,3 ]
Zhang, W. [1 ,2 ,6 ]
Bloom, B. J. [1 ,2 ,3 ,7 ]
Ye, J. [1 ,2 ,3 ]
机构
[1] NIST, JILA, 440 UCB, Boulder, CO 80309 USA
[2] Univ Colorado, 440 UCB, Boulder, CO 80309 USA
[3] Univ Colorado, Dept Phys, 390 UCB, Boulder, CO 80309 USA
[4] Max Planck Inst Quantum Opt, Hans Kopfermann Str 1, D-85748 Garching, Germany
[5] Columbia Univ, Dept Phys, 538 West 120th St, New York, NY 10027 USA
[6] NIST, 325 Broadway, Boulder, CO 80305 USA
[7] Rigetti Comp, 775 Heinz Ave, Berkeley, CA 94710 USA
基金
日本学术振兴会;
关键词
SPIN-EXCHANGE INTERACTIONS; MOTT INSULATOR; ATOMIC CLOCK; GAS;
D O I
10.1126/science.aam5538
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Strontium optical lattice clocks have the potential to simultaneously interrogate millions of atoms with a high spectroscopic quality factor of 4 x 10(17). Previously, atomic interactions have forced a compromise between clock stability, which benefits from a large number of atoms, and accuracy, which suffers from density-dependent frequency shifts. Here we demonstrate a scalable solution that takes advantage of the high, correlated density of a degenerate Fermi gas in a three-dimensional (3D) optical lattice to guard against on-site interaction shifts. We show that contact interactions are resolved so that their contribution to clock shifts is orders of magnitude lower than in previous experiments. A synchronous clock comparison between two regions of the 3D lattice yields a measurement precision of 5 x 10(-19) in 1 hour of averaging time.
引用
收藏
页码:90 / 93
页数:4
相关论文
共 50 条
  • [21] Chaos and band structure in a three-dimensional optical lattice
    Boretz, Yingyue
    Reichl, L. E.
    PHYSICAL REVIEW E, 2015, 91 (04):
  • [22] Three-dimensional cavity cooling and trapping in an optical lattice
    Murr, K.
    Nussmann, S.
    Puppe, T.
    Hijlkema, M.
    Weber, B.
    Webster, S. C.
    Kuhn, A.
    Rempe, G.
    PHYSICAL REVIEW A, 2006, 73 (06):
  • [23] Rabi spectroscopy of three-dimensional optical lattice clocks
    Liu, Guangcun
    Huang, Yinan
    Cheng, Zhuo
    Chen, Ruize
    Yu, Zhenhua
    PHYSICAL REVIEW A, 2020, 101 (01)
  • [24] Quantum spin liquid with a Majorana Fermi surface on the three-dimensional hyperoctagon lattice
    Hermanns, M.
    Trebst, S.
    PHYSICAL REVIEW B, 2014, 89 (23)
  • [25] Three-component Fermi gas in a one-dimensional optical lattice
    Azaria, P.
    Capponi, S.
    Lecheminant, P.
    PHYSICAL REVIEW A, 2009, 80 (04):
  • [26] Degenerate Rabi spectroscopy of the Floquet engineered optical lattice clock
    Liu, Wei-Xin
    Lu, Xiao-Tong
    Li, Ting
    Zhang, Xue-Feng
    Chang, Hong
    Wang, Tao
    Li, Wei-Dong
    PHYSICAL REVIEW A, 2023, 107 (01)
  • [27] Loading and detecting a three-dimensional Fermi gas in a one-dimensional optical superlattice
    Sheikhan, Ameneh
    Kollath, Corinna
    PHYSICAL REVIEW A, 2015, 91 (04):
  • [28] Three-dimensional Dirac-like fermions in an optical lattice
    Yang, Mou
    Zhu, Shi-Liang
    PHYSICAL REVIEW A, 2010, 82 (06):
  • [29] Atoms in the lowest motional band of a three-dimensional optical lattice
    MullerSeydlitz, T
    Hartl, M
    Brezger, B
    Hansel, H
    Keller, C
    Schnetz, A
    Spreeuw, RJC
    Pfau, T
    Mlynek, J
    PHYSICAL REVIEW LETTERS, 1997, 78 (06) : 1038 - 1041
  • [30] Polarized superfluid state in a three-dimensional fermionic optical lattice
    Koga, A.
    Bauer, J.
    Werner, P.
    Pruschke, Th
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2011, 43 (03): : 697 - 701