MXene-based suspension electrode with improved energy density for electrochemical flow capacitors

被引:8
|
作者
Singh, Pushpendra [1 ,2 ,3 ,5 ]
Akuzum, Bilen [1 ,2 ,5 ]
Shuck, Christopher E. [1 ,2 ]
Pal, Kaushik [3 ,4 ]
Gogotsi, Yury [1 ,2 ]
Kumbur, E. Caglan [5 ]
机构
[1] Drexel Univ, AJ Drexel Nanomat Inst, Philadelphia, PA 19104 USA
[2] Drexel Univ, Dept Mat Sci & Engn, Philadelphia, PA 19104 USA
[3] Indian Inst Technol Roorkee, Ctr Nanotechnol, Roorkee 247667, Uttar Pradesh, India
[4] Indian Inst Technol Roorkee, Dept Mech & Ind Engn, Roorkee 247667, Uttar Pradesh, India
[5] Drexel Univ, Dept Mech Engn & Mech, Electrochem Energy Syst Lab, Philadelphia, PA 19104 USA
基金
美国国家科学基金会;
关键词
Electrochemical flow capacitors; MXene; Suspension electrodes; Energy storage; 2D materials; STORAGE; BATTERY; OXIDE;
D O I
10.1016/j.jpowsour.2021.230187
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The development of high capacitance materials with high packing density and low viscosity in suspension electrodes is critical for progressing towards high-efficiency, low-footprint electrochemical flow capacitors (EFCs). Here, we report on the first electrochemical and rheological characterization of MXene-based suspension electrodes, using multilayer Ti3C2Tx as the active material and carbon black (CB) as the conductive additive in symmetric and asymmetric EFC devices. In the case of symmetric Ti3C2Tx devices, the Ti3C2Tx concentration is fixed to 22 vol.% in the slurry and the CB concentration is varied from 0.5 to 2.0 vol.%. The symmetric device arrangement offers a high capacitance of 240 F ml(-1) (2 mV s(-1)) and volumetric energy density of 2.65 Wh l(-1) @ power density of 47.82 W l(-1). Additionally, to extend the potential window, an asymmetric device assembly of activated carbon and Ti3C2Tx is investigated. This arrangement allows a stable operating potential window of 1 V with an energy density of 4.12 Wh l(-1) and power density of 31.73 Wl(-1). Overall, multilayer Ti3C2Tx seems to be excellent candidate for flowable electrode applications, offering high capacitance, energy density and low vis-cosity due to its high electrochemical activity, excellent electrical conductivity, and versatile surface chemistry.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] Recent advances in MXene-based anode materials for alkali metal-ion capacitors
    Zhu, G.
    Zhang, H.
    Lu, J.
    Hou, Y.
    Liu, P.
    Dong, S.
    Zhang, Y.
    Dong, X.
    MATERIALS TODAY SUSTAINABILITY, 2022, 20
  • [42] MXene-Based Single-Atom Catalysts: Synthesis and Electrochemical Catalysis
    Jing, Yuanju
    Kang, Chun
    Lin, Yanxin
    Gao, Jie
    Wang, Xinbo
    PROGRESS IN CHEMISTRY, 2022, 34 (11) : 2373 - 2385
  • [43] Magnetic MXene-based molecularly imprinted electrochemical sensor for methylmalonic acid
    Xing, Ying
    Ding, Xin
    Liang, Xilin
    Liu, Guangyan
    Hou, Shili
    Hou, Shifeng
    MICROCHIMICA ACTA, 2023, 190 (06)
  • [44] MXene-based electrochemical sensors for detection of environmental pollutants: A comprehensive review
    Rhouati, Amina
    Berkani, Mohammed
    Vasseghian, Yasser
    Golzadeh, Nasrin
    CHEMOSPHERE, 2022, 291
  • [45] Recent advances and future prospects of low-dimensional Mo2C MXene-based electrode for flexible electrochemical energy storage devices
    Ponnalagar, Dineshkumar
    Hang, Da-Ren
    Liang, Chi-Te
    Chou, Mitch M. C.
    PROGRESS IN MATERIALS SCIENCE, 2024, 145
  • [46] Low-dimensional carbon and MXene-based electrochemical capacitor electrodes
    Yoon, Yeoheung
    Lee, Keunsik
    Lee, Hyoyoung
    NANOTECHNOLOGY, 2016, 27 (17)
  • [47] Application of MXene-based Composites in Electrochemical Biosensors for Detection of Cancer Markers
    Zhao-Hui, Huo
    Xiao-Wen, Chen
    Xiao-Min, Zhang
    Xiao-Xia, Huang
    Wan-Ying, Lan
    Qi', Jiang
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2024, 52 (08) : 1051 - 1060
  • [48] Electrochemical disinfection boosting by a pulsed-assisted MXene-based cathode
    Wang, Zhuowen
    Liu, Sibei
    Cui, Songhao
    Jing, Baojian
    Qiu, Shan
    Deng, Fengxia
    ELECTROCHIMICA ACTA, 2024, 489
  • [49] MXenes and MXene-based composites for energy conversion and storage applications
    Xiao, Zhuohao
    Xiao, Xiaodong
    Kong, Ling Bing
    Dong, Hongbo
    Li, Xiuying
    Sun, Xinyuan
    He, Bin
    Ruan, Shuangchen
    Zhai, Jianpang
    JOURNAL OF MATERIOMICS, 2023, 9 (06) : 1067 - 1112
  • [50] Self-Supporting, Binder-Free, and Flexible Ti3C2TX MXene-Based Supercapacitor Electrode with Improved Electrochemical Performance
    Ma, Rui
    Zhang, Xujing
    Zhuo, Jingting
    Cao, Lingyun
    Song, Yutong
    Yin, Yajiang
    Wang, Xiaofeng
    Yang, Guowei
    Yi, Fang
    ACS NANO, 2022, 16 (06) : 9713 - 9727