Fundamentals for Design and Construction of a Fuzzy Random Forest

被引:0
|
作者
Bonissone, Piero P. [1 ]
Manuel Cadenas, Jose [2 ]
del Carmen Garrido, Maria [2 ]
Andres Diaz-Valladares, R. [3 ]
机构
[1] GE Global Res, 1 Res Circle, Niskayuna, NY 12309 USA
[2] Univ Murcia, Dept Imgenieria Infromat Commun, Murcia, Spain
[3] Univ Montemorelos, Dept Ciencias Computacionales, Montemorelos, Mexico
来源
FOUNDATIONS OF REASONING UNDER UNCERTAINTY | 2010年 / 249卷
关键词
Approximate Reasoning; Fuzzy Decision Trees; Random Forest; Combination Methods; COMBINING CLASSIFIERS; DECISION TREES; CLASSIFICATION; ENSEMBLES;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Following Breiman's methodology, we propose the fundamentals to design and construct a "forest" of randomly generated fuzzy decision trees, i.e., a Fuzzy Random Forest. This approach combines the robustness of multi-classifiers, the construction efficiency of decision trees, the power of the randomness to increase the diversity of the trees in the forest, and the flexibility of fuzzy logic and the fuzzy sets for data managing. A prototype for the method has been constructed and we have implemented some specific strategies for inference in the Fuzzy Random Forest. Some experimental results are given.
引用
收藏
页码:23 / +
页数:3
相关论文
共 50 条
  • [21] A collaborative ensemble construction method for federated random forest
    Lim, Penjan Antonio Eng
    Park, Cheong Hee
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 255
  • [22] Random Forest Construction With Robust Semisupervised Node Splitting
    Liu, Xiao
    Song, Mingli
    Tao, Dacheng
    Liu, Zicheng
    Zhang, Luming
    Chen, Chun
    Bu, Jiajun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (01) : 471 - 483
  • [23] Using Cluster-Context Fuzzy Decision Trees in Fuzzy Random Forest
    Gadomer, Lukasz
    Sosnowski, Zenon A.
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT (CISIM 2017), 2017, 10244 : 180 - 192
  • [24] Analysis of fuzzy random network in shaft building construction
    Fuxin Kuangye Xueyuan Xuebao (Ziran Kexue Ban)/Journal of Fuxin Mining Institute (Natural Science Edition), 1996, 15 (01): : 34 - 37
  • [25] Fuzzy kernel evidence Random Forest for identifying pseudouridine sites
    Chen, Mingshuai
    Sun, Mingai
    Su, Xi
    Tiwari, Prayag
    Ding, Yijie
    BRIEFINGS IN BIOINFORMATICS, 2024, 25 (03)
  • [26] Learning in a Fuzzy Random Forest Ensemble from Imperfect Data
    Cadenas, Jose M.
    Carmen Garrido, M.
    Martinez, Raquel
    2011 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2011, : 277 - 282
  • [27] A New Random Forest Ensemble of Intuitionistic Fuzzy Decision Trees
    Ren, Yingtao
    Zhu, Xiaomin
    Bai, Kaiyuan
    Zhang, Runtong
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2023, 31 (05) : 1729 - 1741
  • [28] Evaluation of Random Subspace and Random Forest Regression Models Based on Genetic Fuzzy Systems
    Lasota, Tadeusz
    Telec, Zbigniew
    Trawinski, Bogdan
    Trawinski, Grzegorz
    ADVANCES IN KNOWLEDGE-BASED AND INTELLIGENT INFORMATION AND ENGINEERING SYSTEMS, 2012, 243 : 88 - 97
  • [29] Random Forest Regression in Predicting Students' Achievements and Fuzzy Grades
    Doz, Daniel
    Cotic, Mara
    Felda, Darjo
    MATHEMATICS, 2023, 11 (19)
  • [30] An Algorithm Combining Random Forest Classification and Fuzzy Comprehensive Evaluation
    Zhu, Jing
    Huang, Song
    Shi, Yaqing
    Wu, Kaishun
    Wang, Yanqiu
    JOURNAL OF INTERNET TECHNOLOGY, 2022, 23 (04): : 735 - 747