The evidence framework applied to sparse kernel logistic regression

被引:9
|
作者
Cawley, GC [1 ]
Talbot, NLC [1 ]
机构
[1] Univ E Anglia, Sch Comp Sci, Norwich NR4 7TJ, Norfolk, England
关键词
Bayesian learning; kernel methods; logistic regression;
D O I
10.1016/j.neucom.2004.11.021
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we present a simple hierarchical Bayesian treatment of the sparse kernel logistic regression (KLR) model based on the evidence framework introduced by MacKay. The principal innovation lies in the re-parameterisation of the model such that the usual spherical Gaussian prior over the parameters in the kernel-induced feature space also corresponds to a spherical Gaussian prior over the transformed parameters, permitting the straight-forward derivation of an efficient update formula for the regularisation parameter. The Bayesian framework also allows the selection of good values for kernel parameters through maximisation of the marginal likelihood, or evidence, for the model. Results obtained on a variety of benchmark data sets are provided indicating that the Bayesian KLR model is competitive with KLR models, where the hyper-parameters are selected via cross-validation and with the support vector machine and relevance vector machine. (c) 2004 Elsevier B.V. All rights reserved.
引用
收藏
页码:119 / 135
页数:17
相关论文
共 50 条
  • [21] Kernel subspace pursuit for sparse regression
    Kabbara, Jad
    Psaromiligkos, Ioannis N.
    PATTERN RECOGNITION LETTERS, 2016, 69 : 56 - 61
  • [22] A Fast Dual Algorithm for Kernel Logistic Regression
    S. S. Keerthi
    K. B. Duan
    S. K. Shevade
    A. N. Poo
    Machine Learning, 2005, 61 : 151 - 165
  • [23] Kernel logistic regression and the import vector machine
    Zhu, J
    Hastie, T
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 14, VOLS 1 AND 2, 2002, 14 : 1081 - 1088
  • [24] Logistic regression applied to natural hazards: rare event logistic regression with replications
    Guns, M.
    Vanacker, V.
    NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2012, 12 (06) : 1937 - 1947
  • [25] Kernel logistic regression and the import vector machine
    Zhu, J
    Hastie, T
    JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2005, 14 (01) : 185 - 205
  • [26] Texture classification using kernel logistic regression
    Tambo, Asongu L.
    Mistry, Rajan B.
    Campbell, Jonathan M.
    Chan, Sherwin R.
    Hang, Xiyi
    INT CONF ON CYBERNETICS AND INFORMATION TECHNOLOGIES, SYSTEMS AND APPLICATIONS/INT CONF ON COMPUTING, COMMUNICATIONS AND CONTROL TECHNOLOGIES, VOL 1, 2007, : 259 - 262
  • [27] Efficient model selection for kernel logistic regression
    Cawley, GC
    Talbot, NLC
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 439 - 442
  • [28] A fast dual algorithm for kernel logistic regression
    Keerthi, SS
    Duan, KB
    Shevade, SK
    Poo, AN
    MACHINE LEARNING, 2005, 61 (1-3) : 151 - 165
  • [29] Large-Scale Sparse Logistic Regression
    Liu, Jun
    Chen, Jianhui
    Ye, Jieping
    KDD-09: 15TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2009, : 547 - 555
  • [30] Leukemia Prediction Using Sparse Logistic Regression
    Manninen, Tapio
    Huttunen, Heikki
    Ruusuvuori, Pekka
    Nykter, Matti
    PLOS ONE, 2013, 8 (08):