Estimating saturated hydraulic conductivity and air permeability from soil physical properties using state-space analysis

被引:3
|
作者
Poulsen, TG
Moldrup, P
Wendroth, O
Nielsen, DR
机构
[1] Univ Aalborg, Inst Life Sci, Dept Environm Engn, DK-9000 Aalborg, Denmark
[2] Inst Soil Landscape Res, ZALF, D-15374 Muncheberg, Germany
[3] Univ Calif Davis, Dept Land Air & Water Resources, Davis, CA 95616 USA
关键词
saturated hydraulic conductivity; air permeability; undisturbed soil; state-space modeling; ARIMA modeling;
D O I
10.1097/01.ss.0000070906.55992.75
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Estimates of soil hydraulic conductivity (K) and air permeability (k(a)) at given soil-water potentials are often used as reference points in constitutive models for K and k(a) as functions of moisture content and are, therefore, a prerequisite for predicting migration of water, air, and dissolved and gaseous chemicals in the vadose zone. In this study, three modeling approaches were used to identify the dependence of saturated hydraulic conductivity (K-S) and air permeability at -100 cm H2O soil-water potential (k(a100)) on soil physical properties in undisturbed soil: (i) Multiple regression, (ii) ARIMA (autoregressive integrated moving average) modeling, and (iii) State-space modeling. In addition to actual soil property values, ARIMA and state-space models account for effects of spatial correlation in soil properties. Measured data along two 70-m-long transects at a 20-year old constructed field were used. Multiple regression and ARIMA models yielded similar prediction accuracy, whereas state-space models generally gave significantly higher accuracy. State-space modeling suggested K-S at a given location could be predicted using nearby values of K-S, k(a100) and air-filled porosity at -100 cm H2O soil-water potential (epsilon(100)). Similarly, k(a100) could be predicted from nearby values of k(a100) and epsilon(100). Including soil total porosity in the state-space modeling did not improve prediction accuracy. Thus, macro-porosity (epsilon(100)) was the key porosity parameter for predicting both K-S and k(a100) in undisturbed soil.
引用
收藏
页码:311 / 320
页数:10
相关论文
共 50 条
  • [41] A methodology for the identification of physical parameters of soil-foundation-bridge pier systems from identified state-space models
    Carbonari, Sandro
    Dezi, Francesca
    Arezzo, Davide
    Gara, Fabrizio
    Engineering Structures, 2022, 255
  • [42] Using inverse methods for estimating soil hydraulic properties from field data as an alternative to direct methods
    Ritter, A
    Hupet, F
    Muñoz-Carpena, R
    Lambot, S
    Vanclooster, M
    AGRICULTURAL WATER MANAGEMENT, 2003, 59 (02) : 77 - 96
  • [43] Determinants of road traffic safety: New evidence from Australia using state-space analysis
    Nghiem, Son
    Commandeur, Jacques J. F.
    Connelly, Luke B.
    ACCIDENT ANALYSIS AND PREVENTION, 2016, 94 : 65 - 72
  • [44] Comparative Analysis of Saturated Hydraulic Conductivity (Ksat) Derived from Image Analysis of Soil Thin Sections, Pedotransfer Functions, and Field-Measured Methods
    Libohova, Zamir
    Schoeneberger, Philip
    Owens, Phillip R.
    Wills, Skye
    Wysocki, Doug
    Williams, Candiss
    Seybold, Cathy
    DIGITAL SOIL MORPHOMETRICS, 2016, : 207 - 222
  • [45] Predicting hydraulic conductivity around septic tank systems using soil physico-chemical properties and determination of principal soil factors by multivariate analysis
    Ganiyu, S. A.
    Rabiu, J. A.
    Olatoye, R. O.
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2020, 32 (01) : 555 - 562
  • [46] Estimating soil hydraulic properties from oven-dry to full saturation using shortwave infrared imaging and inverse modeling
    Bandai, Toshiyuki
    Sadeghi, Morteza
    Babaeian, Ebrahim
    Jones, Scott B.
    Tuller, Markus
    Ghezzehei, Teamrat A.
    JOURNAL OF HYDROLOGY, 2024, 635
  • [47] Automatic Derivation of State-Space Model from Linear Electrical Circuits with Dependent Variables using Modified Nodal Analysis
    Hao, Chuantong
    Merlin, Michael
    2020 IEEE 21ST WORKSHOP ON CONTROL AND MODELING FOR POWER ELECTRONICS (COMPEL), 2020, : 125 - 130
  • [48] State-space reconstruction from partial observables using an invertible neural network with structure-preserving properties for nonlinear structural dynamics
    Najera-Flores, David A.
    Todd, Michael D.
    NONLINEAR DYNAMICS, 2024, 112 (20) : 18055 - 18077
  • [49] Estimating soil hydraulic conductivity from time-lapse ground-penetrating radar data in podzolic soils using the green-ampt model
    Dahunsi, Juwonlo
    Pathirana, Sashini
    Cheema, Mumtaz
    Krishnapillai, Manokararajah
    Galagedara, Lakshman
    JOURNAL OF HYDROLOGY, 2025, 657
  • [50] High-resolution saturated hydraulic conductivity logging of borehole cores using air permeability measurementsLog haute-résolution de la conductivité hydraulique à saturation de carottes de forage par mesure de la perméabilité à l’airRegistros de alta resolución de la conductividad hidráulica saturada en testigos de perforaciones usando mediciones de permeabilidad al aire利用透气性测量结果记录钻孔岩心高分辨率饱和水力传导率Registo de alta resolução da condutividade hidráulica em meio saturado em amostras de sondagem, utilizando medições com permeâmetro de ar
    B. Rogiers
    P. Winters
    M. Huysmans
    K. Beerten
    D. Mallants
    M. Gedeon
    O. Batelaan
    A. Dassargues
    Hydrogeology Journal, 2014, 22 (6) : 1345 - 1358