Statistical shape analysis: Clustering, learning, and testing

被引:185
|
作者
Srivastava, A [1 ]
Joshi, SH
Mio, W
Liu, XW
机构
[1] Florida State Univ, Dept Stat, Tallahassee, FL 32306 USA
[2] Florida State Univ, Dept Elect Engn, Tallahassee, FL 32306 USA
[3] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[4] Florida State Univ, Dept Comp Sci, Tallahassee, FL 32306 USA
基金
美国国家科学基金会;
关键词
shape analysis; shape statistics; shape learning; shape testing; shape retrieval; shape clustering;
D O I
10.1109/TPAMI.2005.86
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Using a differential-geometric treatment of planar shapes, we present tools for: 1) hierarchical clustering of imaged objects according to the shapes of their boundaries, 2) learning of probability models for clusters of shapes, and 3) testing of newly observed shapes under competing probability models. Clustering at any level of hierarchy is performed using a mimimum variance type criterion criterion and a Markov process. Statistical means of clusters provide shapes to be clustered at the next higher level, thus building a hierarchy of shapes. Using finite-dimensional approximations of spaces tangent to the shape space at sample means, we ( implicitly) impose probability models on the shape space, and results are illustrated via random sampling and classification ( hypothesis testing). Together, hierarchical clustering and hypothesis testing provide an efficient framework for shape retrieval. Examples are presented using shapes and images from ETH, Surrey, and AMCOM databases.
引用
收藏
页码:590 / 602
页数:13
相关论文
共 50 条
  • [31] Statistical shape modelling for the analysis of head shape variations
    Heutinck, Pam
    Knoops, Paul
    Rodriguez Florez, Naiara
    Biffi, Benedetta
    Breakey, William
    James, Greg
    Koudstaal, Maarten
    Schievano, Silvia
    Dunaway, David
    Jeelani, Owase
    Borghi, Alessandro
    JOURNAL OF CRANIO-MAXILLOFACIAL SURGERY, 2021, 49 (06) : 449 - 455
  • [32] Automatic Clustering via Outward Statistical Testing on Density Metrics
    Wang, Guangtao
    Song, Qinbao
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (08) : 1971 - 1985
  • [33] STATISTICAL BASIS OF NONLINEAR HEBBIAN LEARNING AND APPLICATION TO CLUSTERING
    SUDJIANTO, A
    HASSOUN, MH
    NEURAL NETWORKS, 1995, 8 (05) : 707 - 715
  • [34] Clustering Description Extraction Based on Statistical Machine Learning
    Zhang, Chengzhi
    Xu, Hongjiao
    2008 INTERNATIONAL SYMPOSIUM ON INTELLIGENT INFORMATION TECHNOLOGY APPLICATION, VOL II, PROCEEDINGS, 2008, : 22 - +
  • [35] Unsupervised learning for hierarchical clustering using statistical information
    Okamoto, M
    Bu, N
    Tsuji, T
    ADVANCES IN NEURAL NETWORKS - ISNN 2004, PT 1, 2004, 3173 : 834 - 839
  • [36] STATISTICAL SHAPE-DISCRIMINATION AND CLUSTERING USING AN EFFICIENT SET OF MOMENTS
    MERTZIOS, BG
    TSIRIKOLIAS, K
    PATTERN RECOGNITION LETTERS, 1993, 14 (06) : 517 - 522
  • [37] Statistical Shape Model Generation Using K-means Clustering
    Wu, Jiaqi
    Li, Guangxu
    Lu, Huimin
    Kim, Hyoungseop
    PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON ELECTRONICS AND ELECTRICAL ENGINEERING TECHNOLOGY (EEET 2018), 2018, : 207 - 211
  • [38] Learning Shape Analysis
    Brockschmidt, Marc
    Chen, Yuxin
    Kohli, Pushmeet
    Krishna, Siddharth
    Tarlow, Daniel
    STATIC ANALYSIS (SAS 2017), 2017, 10422 : 66 - 87
  • [39] STATISTICAL DESIGN AND ANALYSIS OF SHAPE STUDIES
    SNEE, RD
    ANDREWS, HP
    BIOMETRICS, 1968, 24 (04) : 1040 - &
  • [40] Statistical shape analysis applied to microlithography
    Micheletti, Alessandra
    Severgnini, Ermes
    Terragni, Filippo
    Vasconi, Mauro
    DATA ANALYSIS AND MODELING FOR PROCESS CONTROL III, 2006, 6155