State and parameter estimation for model-based retinal laser treatment

被引:5
|
作者
Kleyman, Viktoria [1 ]
Schaller, Manuel [2 ]
Wilson, Mitsuru [2 ]
Mordmueller, Mario [3 ]
Brinkmann, Ralf [3 ]
Worthmann, Karl [2 ]
Mueller, Matthias A. [1 ]
机构
[1] Leibniz Univ Hannover, Inst Automat Control, Hannover, Germany
[2] Tech Univ Ilmemau, Inst Math, Ilmenau, Germany
[3] Univ Lubeck, Inst Biomed Opt, Lubeck, Germany
来源
IFAC PAPERSONLINE | 2021年 / 54卷 / 06期
关键词
moving horizon estimation; nonlinear observers and filter design; model predictive control in medicine applications; modeling; parameter-varying systems; model reduction; MANAGEMENT;
D O I
10.1016/j.ifacol.2021.08.552
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an approach for state and parameter estimation in retinal laser treatment by a novel setup where both measurement and heating is performed by a single laser. In this medical application, the temperature that is induced by the laser in the patient's eye is critical for a successful and safe treatment. To this end, we pursue a model-based approach using a model given by a heat diffusion equation on a cylindrical domain, where the source term is given by the absorbed laser power. The model is parametric in the sense that it involves an absorption coefficient, which depends on the treatment spot and plays a central role in the input-output behavior of the system. After discretization, we apply a particularly suited parametric model order reduction to ensure real-time tractability while retaining parameter dependence. We augment known state estimation techniques, i.e., extended Kalman filtering and moving horizon estimation, with parameter estimation to estimate the absorption coefficient and the current state of the system. Eventually, we show first results for simulated and experimental data from porcine eyes. We find that, regarding convergence speed, the moving horizon estimation slightly outperforms the extended Kalman filter on measurement data in terms of parameter and state estimation, however, on simulated data the results are very similar. Copyright (C) 2021 The Authors.
引用
收藏
页码:244 / 250
页数:7
相关论文
共 50 条
  • [1] State and Parameter Estimation for Retinal Laser Treatment
    Kleyman, Viktoria
    Schaller, Manuel
    Mordmueller, Mario
    Wilson, Mitsuru
    Brinkmann, Ralf
    Worthmann, Karl
    Mueller, Matthias A.
    IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, 2023, 31 (03) : 1366 - 1378
  • [2] Parameter estimation and model reduction for model predictive control in retinal laser treatment
    Schaller, Manuel
    Wilson, Mitsuru
    Kleyman, Viktoria
    Mordmueller, Mario
    Brinkmann, Ralf
    Mueller, Matthias A.
    Worthmann, Karl
    CONTROL ENGINEERING PRACTICE, 2022, 128
  • [3] Model-based neural algorithms for parameter estimation
    Skantze, FP
    INFORMATION SCIENCES, 1998, 104 (1-2) : 107 - 128
  • [4] OPTIMAL PARAMETER ESTIMATION FOR MODEL-BASED QUANTIZATION
    Ozerov, Alexey
    Kleijn, W. Bastiaan
    2009 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS 1- 8, PROCEEDINGS, 2009, : 2497 - +
  • [5] Differential Model-Based Parameter Estimation of IPMSMs From Multi-State Measurements
    Cheng, Hongfu
    Deshpande, Uday
    Kar, Narayan C.
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (09) : 1 - 1
  • [6] Towards Model-based Control Techniques for Retinal Laser Treatment Using Only One Laser
    Mordmueller, M.
    Kleyman, V
    Schaller, M.
    Wilson, M.
    Worthmann, K.
    Mueller, M. A.
    Brinkmann, R.
    OPTO-ACOUSTIC METHODS AND APPLICATIONS IN BIOPHOTONICS V, 2021, 11923
  • [7] STATE-SPACE MODEL-BASED PARAMETER-ESTIMATION METHODS AND SOME APPLICATIONS
    RAO, BD
    ADVANCED ALGORITHMS AND ARCHITECTURES FOR SIGNAL PROCESSING IV, 1989, 1152 : 257 - 264
  • [8] Model-based experimental screening for DOC parameter estimation
    Lundberg, Bjorn
    Sjoblom, Jonas
    Johansson, Asa
    Westerberg, Bjorn
    Creaser, Derek
    COMPUTERS & CHEMICAL ENGINEERING, 2015, 74 : 144 - 157
  • [9] Vehicle parameter estimation using a model-based estimator
    Reina, Giulio
    Paiano, Matilde
    Blanco-Claraco, Jose-Luis
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2017, 87 : 227 - 241
  • [10] Gaussian Mixture Model-Based Ensemble Kalman Filtering for State and Parameter Estimation for a PMMA Process
    Li, Ruoxia
    Prasad, Vinay
    Huang, Biao
    PROCESSES, 2016, 4 (02):