Differential Model-Based Parameter Estimation of IPMSMs From Multi-State Measurements

被引:0
|
作者
Cheng, Hongfu [1 ]
Deshpande, Uday [2 ]
Kar, Narayan C. [1 ]
机构
[1] Univ Windsor, Dept Elect & Comp Engn, Windsor, ON N9B 3P4, Canada
[2] D&V Elect Ltd, Woodbridge, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Torque; Parameter estimation; Accuracy; Estimation; Couplings; Mathematical models; Steady-state; Differential model; interior permanent magnet synchronous machines (IPMSMs); least square algorithm; magnetic saturation; parameter estimation; voltage source inverter (VSI) nonlinearity; MULTIPARAMETER ESTIMATION; PMSM; VSI;
D O I
10.1109/TMAG.2024.3413539
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Accurate parameter estimations are essential for efficient operation and high performance of interior permanent magnet synchronous machines (IPMSMs). Voltage source inverter (VSI) nonlinearity can adversely affect parameter estimation in IPMSM drive systems. Cross influence can compromise the accuracy of parameter estimation. This article proposes a differential model-based decoupling scheme to eliminate VSI nonlinearity effects and cross influence for accurately estimating key IPMSM parameters, including permanent magnet (PM) flux linkage, winding resistance, and machine inductances. The adverse effect of measurement noise and observational error on parameter estimation can be reduced in the proposed differential model. Utilizing the decoupling scheme, each parameter is estimated individually with high efficiency and accuracy leveraging the least square algorithm. The proposed differential model-based decoupling scheme is particularly well-suited for accurately estimating parameters over a wide speed range and diverse load conditions. The estimated parameters can improve the accuracy of predicting electromagnetic torque. Furthermore, the proposed method is noninvasive, robust, and does not require extra signal injection.
引用
收藏
页码:1 / 1
页数:6
相关论文
共 50 条
  • [1] Differential Model based Parameter Estimation of IPMSMs from Multi-state Measurements
    Cheng, Hongfu
    Deshpande, Uday
    Kar, Narayan C.
    2024 IEEE INTERNATIONAL MAGNETIC CONFERENCE-SHORT PAPERS, INTERMAG SHORT PAPERS, 2024,
  • [2] Bayesian Parameter Estimation for Multi-State Components
    Lin, Peng
    Liu, Yu
    Zhang, Xiaohu
    Huang, Zhuhua
    PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (QR2MSE), VOLS I-IV, 2013, : 198 - 201
  • [3] States based iterative parameter estimation for a state space model with multi-state delays using decomposition
    Gu, Ya
    Ding, Feng
    Li, Junhong
    SIGNAL PROCESSING, 2015, 106 : 294 - 300
  • [4] Efficient Nonlinear Multi-Parameter Decoupled Estimation of PMSM Drives Based on Multi-State Voltage and Torque Measurements
    Liu, Ziyang
    Han, Yu
    Feng, Guodong
    Kar, Narayan C.
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2023, 38 (01) : 321 - 331
  • [5] Multi-state dependent parameter model identification and estimation for nonlinear dynamic systems
    Sadeghi, J.
    Tych, W.
    Chotai, A.
    Young, P. C.
    ELECTRONICS LETTERS, 2010, 46 (18) : 1265 - U43
  • [6] Emergency response plan: Model-based assessment with multi-state degradation
    Girard, Clement
    David, Pierre
    Piatyszek, Eric
    Flaus, Jean-Marie
    SAFETY SCIENCE, 2016, 85 : 230 - 240
  • [7] State and parameter estimation for model-based retinal laser treatment
    Kleyman, Viktoria
    Schaller, Manuel
    Wilson, Mitsuru
    Mordmueller, Mario
    Brinkmann, Ralf
    Worthmann, Karl
    Mueller, Matthias A.
    IFAC PAPERSONLINE, 2021, 54 (06): : 244 - 250
  • [8] A Multi-State Optimization Framework for Parameter Estimation in Biological Systems
    Gu, Xu
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (03) : 472 - 482
  • [9] Performance model-based reliability simulation analysis of multi-state electromechanical system
    Hu, Yubin
    Wang, Ruping
    Wang, Xin
    Wang, Tao
    Zhan, Zitao
    2018 PROGNOSTICS AND SYSTEM HEALTH MANAGEMENT CONFERENCE (PHM-CHONGQING 2018), 2018, : 985 - 992
  • [10] Estimation and prediction in a multi-state model for breast cancer
    Putter, H
    van der Hage, J
    de Bock, GH
    Elgalta, R
    van de Velde, CJH
    BIOMETRICAL JOURNAL, 2006, 48 (03) : 366 - 380