Double-buffer silicon-carbon anode material by a dynamic self-assembly process for lithium-ion batteries

被引:20
|
作者
Liu, Fan [1 ]
Liu, Yanxia [1 ,2 ]
Wang, Enyang [1 ]
Ruan, Jingjing [1 ]
Chen, Shimou [2 ]
机构
[1] Zhengzhou Inst Emerging Ind Technol, Henan Key Lab Energy Storage Mat & Proc, Zhengzhou 450003, Peoples R China
[2] Chinese Acad Sci, State Key Lab Multiphase Complex Syst, Beijing Key Lab Ion Liquids Clean Proc, CAS Key Lab Green Proc & Engn,Inst Proc Engn, Beijing 100190, Peoples R China
关键词
Self-assembly; Double-buffer structure; Multilevel porous; Si-based anode materials; Lithium ion battery; HIGH-PERFORMANCE ANODE; COMPOSITE ANODE; NANOPARTICLES; NANOWIRES;
D O I
10.1016/j.electacta.2021.139041
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The volume expansion of the silicon (Si) anode material is still a main bottle-neck problem limiting its battery application. Effective structure design needs to be studied continuously, meanwhile the process feasibility also cannot be ignored. Herein, a novel yet simple method to prepare double-buffer structure hybrids with a multilevel porous self-assembly structure induced by hydrogen bonding employing spray drying methods is reported. The well-designed mesoporous hybrid with crosslinking conductive network shows multi-channels in the interior and carbon nanotubes (CNTs)-enhanced carbon protective layer in the exterior, which can effectively buffer the volume strain of Si and promote the electron/ion transfer. The hybrid anode presents a capacity of 1176.5 mAh g -1 with a high initial coulomb efficiency (ICE) of 87.04%, and maintains at 1006.6 mAh g -1 after 100 cycles with a current density of 200 mA g -1 . The material also exhibits good rate properties and cycle performance at a current density of 500 mA g -1 . The as-designed hybrid is promising in high-level Si-based anode material practical application, which is also important for prospective lithium ion battery industry. (c) 2021 Published by Elsevier Ltd.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Self-assembly of silicon/carbon hybrids and natural graphite as anode materials for lithium-ion batteries (vol 6, pg 104995, 2016)
    Wang, Aoning
    Liu, Fandong
    Wang, Zhoulu
    Liu, Xiang
    RSC ADVANCES, 2016, 6 (112): : 111398 - 111398
  • [22] A Hollow Silicon Nanosphere/Carbon Nanotube Composite as an Anode Material for Lithium-Ion Batteries
    Tang, Hao
    Xu, Yuanyuan
    Liu, Li
    Zhao, Decheng
    Zhang, Zhen
    Wu, Yutong
    Zhang, Yi
    Liu, Xiang
    Wang, Zhoulu
    COATINGS, 2022, 12 (10)
  • [23] Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries
    Liu, Hongbin
    Chen, Yun
    Jiang, Bo
    Zhao, Yue
    Guo, Xiaolin
    Ma, Tingli
    DALTON TRANSACTIONS, 2020, 49 (17) : 5669 - 5676
  • [24] Carbon paper substrate for silicon-carbon composite anodes in lithium-ion batteries
    Si, Q.
    Matsui, M.
    Horiba, T.
    Yamamoto, O.
    Takeda, Y.
    Seki, N.
    Imanishi, N.
    JOURNAL OF POWER SOURCES, 2013, 241 : 744 - 750
  • [25] Double-carbon protected silicon anode for high performance lithium-ion batteries
    Zhu, Linhui
    Chen, Yanli
    Wu, Changqing
    Chu, Ruixia
    Zhang, Jie
    Jiang, Heng
    Zeng, Yibo
    Zhang, Ying
    Guo, Hang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2020, 812
  • [26] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Fei Dou
    Liyi Shi
    Guorong Chen
    Dengsong Zhang
    Electrochemical Energy Reviews, 2019, 2 : 149 - 198
  • [27] Silicon/Carbon Composite Anode Materials for Lithium-Ion Batteries
    Dou, Fei
    Shi, Liyi
    Chen, Guorong
    Zhang, Dengsong
    ELECTROCHEMICAL ENERGY REVIEWS, 2019, 2 (01) : 149 - 198
  • [28] Defective Carbon Nanocone as an Anode Material for Lithium-Ion Batteries
    Omidvar, Akbar
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (11) : 11463 - 11469
  • [29] Durable silicon-carbon composites self-assembled from double-protected heterostructure for lithium-ion batteries
    Bai, Xiao
    Zhang, Hui
    Lin, Junpin
    Zhang, Guang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 615 : 375 - 385
  • [30] Directing Silicon-Graphene Self-Assembly as a Core/Shell Anode for High-Performance Lithium-Ion Batteries
    Zhu, Yuanhua
    Liu, Wen
    Zhang, Xinyue
    He, Jinchao
    Chen, Jitao
    Wang, Yapei
    Cao, Tingbing
    LANGMUIR, 2013, 29 (02) : 744 - 749