Linear hydrodynamics and viscoelasticity of nematic elastomers

被引:66
|
作者
Terentjev, EM [1 ]
Warner, M [1 ]
机构
[1] Univ Cambridge, Cavendish Lab, Cambridge CB3 0HE, England
来源
EUROPEAN PHYSICAL JOURNAL E | 2001年 / 4卷 / 03期
关键词
D O I
10.1007/s101890170117
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We develop a continuum theory of linear viscoelastic response in oriented monodomain nematic elastomers. The expression for the dissipation function is analogous to the Leslie-Ericksen version of anisotropic nematic viscosity; ae propose the relations between the anisotropic rubber moduli and new viscous coefficients. A new dimensionless number is introduced, which describes the relative magnitude of viscous and rubber-elastic torques. In an elastic medium with an independently mobile internal degree of freedom, the nematic director with its own relaxation dynamics, the model shows a dramatic decrease in the dynamic modulus in certain deformation geometries. The degree to which the storage modulus does not altogether drop to zero is shown to be both dependent on frequency and to be proportional to the semi-softness, the non-ideality of a nematic network. We consider the most interesting geometry for the implementation of the theory, calculating the dynamic response to an imposed simple shear and making predictions for effective moduli and (exceptionally high) loss factors.
引用
收藏
页码:343 / 353
页数:11
相关论文
共 50 条
  • [31] Anomalous elasticity of nematic elastomers
    Stenull, O
    Lubensky, TC
    EUROPHYSICS LETTERS, 2003, 61 (06): : 776 - 782
  • [32] Null lagrangians for nematic elastomers
    Saccomandi G.
    Vitolo R.
    Journal of Mathematical Sciences, 2006, 136 (6) : 4470 - 4477
  • [33] The elastic anisotropy of nematic elastomers
    H. Finkelmann
    A. Greve
    M. Warner
    The European Physical Journal E, 2001, 5 : 281 - 293
  • [34] TO THE THEORY OF PHOTOELASTICITY OF NEMATIC ELASTOMERS
    ABRAMCHUK, SS
    NYRKOVA, IA
    KHOKHLOV, AR
    VYSOKOMOLEKULYARNYE SOEDINENIYA SERIYA B, 1989, 31 (07): : 490 - 493
  • [35] Disclinated states in nematic elastomers
    Fried, E
    Todres, RE
    JOURNAL OF THE MECHANICS AND PHYSICS OF SOLIDS, 2002, 50 (12) : 2691 - 2716
  • [36] Attainment results for nematic elastomers
    Agostiniani, Virginia
    Dal Maso, Gianni
    DeSimone, Antonio
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (04) : 669 - 701
  • [37] Sliding friction of nematic elastomers
    Braun, FN
    Viney, C
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (27) : 6771 - 6775
  • [38] Ideally soft nematic elastomers
    Silhavy, M.
    NETWORKS AND HETEROGENEOUS MEDIA, 2007, 2 (02) : 279 - 311
  • [39] Elastic energies for nematic elastomers
    DeSimone, A.
    Teresi, L.
    EUROPEAN PHYSICAL JOURNAL E, 2009, 29 (02): : 191 - 204
  • [40] The elastic anisotropy of nematic elastomers
    Finkelmann, H
    Greve, A
    Warner, M
    EUROPEAN PHYSICAL JOURNAL E, 2001, 5 (03): : 281 - 293