Non-negative matrix factorization - A study on influence of matrix sparseness and subspace distance metrics on image object recognition

被引:0
|
作者
Bajla, Ivan [1 ]
Soukup, Daniel [1 ]
机构
[1] ARC Seibersdorf Res GmbH, A-2444 Seibersdorf, Austria
来源
EIGHT INTERNATIONAL CONFERENCE ON QUALITY CONTROL BY ARTIFICIAL VISION | 2007年 / 6356卷
关键词
non-negative matrix factorization; subspace data representation; image object recognition;
D O I
10.1117/12.736960
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years non-negative factorization (NMF) methods of a reduced image data representation attracted the attention of computer vision community. These methods are considered as a convenient part-based representation of image data for recognition tasks with occluded objects. In the paper two novel modifications of the NMF are proposed which utilize the matrix sparseness control used by Hoyer. We have analyzed the influence of sparseness on recognition rates (RR) for various dimensions of subspaces generated for two image databases. We have studied the behaviour of four types of distances between a projected unknown image object and feature vectors in NMF-subspaces generated for training data. For occluded ORL face data, Euclidean and diffusion distances perform better than Riemannian ones, not following the overall expactation that Euclidean metric is suitable only for orthogonal basis vectors. In the case of occluded USPS digit data, the RR obtained for the modified NMF algorithm show in comparison to the conventional NMF algorithms very close values for all four distances over all dimensions and sparseness constraints. In this case Riemannian distances provide higher RR than Euclidean and diffusion ones. The proposed modified NMF method has a relevant computational benefit, since it does not require calculation of feature vectors which are explicitly generated in the NMF optimization process.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A modified non-negative Matrix Factorization algorithm for face recognition
    Xue, Yun
    Tong, Chong Sze
    Chen, Wen-Sheng
    Zhang, Weipeng
    He, Zhenyu
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 3, PROCEEDINGS, 2006, : 495 - +
  • [42] Ear recognition using improved Non-Negative Matrix Factorization
    Yuan, Li
    Mu, Zhi-Chun
    Zhang, Yu
    Liu, Ke
    18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 4, PROCEEDINGS, 2006, : 501 - +
  • [43] Supervised non-negative matrix factorization algorithm for face recognition
    School of Information Engineering, Hebei University of Technology, Tianjin 300130, China
    Guangdianzi Jiguang, 2007, 5 (622-624+633):
  • [44] Deep Learning and Non-Negative Matrix Factorization in Recognition of Mammograms
    Swiderski, Bartosz
    Kurek, Jaroslaw
    Osowski, Stanislaw
    Kruk, Michal
    Barhoumi, Walid
    EIGHTH INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2016), 2017, 10225
  • [45] Chinese Character Recognition Using Non-negative Matrix Factorization
    Voon, Chen Huey
    Shin, Ker
    Shean, Ng Wei
    JURNAL KEJURUTERAAN, 2024, 36 (02): : 653 - 660
  • [46] Dropout non-negative matrix factorization
    Zhicheng He
    Jie Liu
    Caihua Liu
    Yuan Wang
    Airu Yin
    Yalou Huang
    Knowledge and Information Systems, 2019, 60 : 781 - 806
  • [47] Non-negative matrix factorization on kernels
    Zhang, Daoqiang
    Zhou, Zhi-Hua
    Chen, Songcan
    PRICAI 2006: TRENDS IN ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2006, 4099 : 404 - 412
  • [48] Non-Negative Matrix Factorization With Dual Constraints for Image Clustering
    Yang, Zuyuan
    Zhang, Yu
    Xiang, Yong
    Yan, Wei
    Xie, Shengli
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2020, 50 (07): : 2524 - 2533
  • [49] INFINITE NON-NEGATIVE MATRIX FACTORIZATION
    Schmidt, Mikkel N.
    Morup, Morten
    18TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO-2010), 2010, : 905 - 909
  • [50] Collaborative Non-negative Matrix Factorization
    Benlamine, Kaoutar
    Grozavu, Nistor
    Bennani, Younes
    Matei, Basarab
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2019: TEXT AND TIME SERIES, PT IV, 2019, 11730 : 655 - 666