A Monte Carlo simulation study on partially adaptive estimators of linear regression models

被引:7
|
作者
Kantar, Yeliz Mert [1 ]
Usta, Ilhan [1 ]
Acitas, Sukru [1 ]
机构
[1] Anadolu Univ, Dept Stat, TR-26470 Eskisehir, Turkey
关键词
linear regression model; non-normal error terms; partially adaptive estimator; sandwich estimator; Monte Carlo simulation; JACKKNIFE; ROBUST;
D O I
10.1080/02664763.2010.516389
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper presents a comprehensive comparison of well-known partially adaptive estimators (PAEs) in terms of efficiency in estimating regression parameters. The aim is to identify the best estimators of regression parameters when error terms follow from normal, Laplace, Student's t, normal mixture, lognormal and gamma distribution via the Monte Carlo simulation. In the results of the simulation, efficient PAEs are determined in the case of symmetric leptokurtic and skewed leptokurtic regression error data. Additionally, these estimators are also compared in terms of regression applications. Regarding these applications, using certain standard error estimators, it is shown that PAEs can reduce the standard error of the slope parameter estimate relative to ordinary least squares.
引用
收藏
页码:1681 / 1699
页数:19
相关论文
共 50 条
  • [41] The Efficiency of Ridge Estimations for Multicollinearity Multiple Linear Regression: A Monte-Carlo Simulation-Based Study
    Thaithanan, Jeeraporn
    Wanishsakpong, Wandee
    Panityakul, Thammarat
    Prangchumpol, Dulyawit
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2021, 16 (04): : 1721 - 1727
  • [42] Finite-sample comparison of robust estimators for nonlinear regression using Monte Carlo simulation: Part I. Univariate response models
    Conceicao, Eduardo L. T.
    Portugal, Antonio A. T. G.
    COMPUTERS & CHEMICAL ENGINEERING, 2011, 35 (03) : 530 - 544
  • [43] A simulation study of estimators for generalized linear measurement error models
    Zhao, YJ
    Lee, AH
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1996, 54 (1-3) : 55 - 74
  • [44] Prediction With Mixed Effects Models: A Monte Carlo Simulation Study
    Mangino, Anthony A.
    Finch, W. Holmes
    EDUCATIONAL AND PSYCHOLOGICAL MEASUREMENT, 2021, 81 (06) : 1118 - 1142
  • [45] A SIMULATION ASSESSMENT OF THE PROPERTIES OF THE ESTIMATORS OF A PARTIALLY LINEAR MODEL
    Tarepe, Dennis A.
    Cuarteros, Kennet G.
    Diangca, Palawan M.
    ADVANCES AND APPLICATIONS IN STATISTICS, 2020, 65 (02) : 209 - 226
  • [46] Monte Carlo Simulation of Partially Ionized Hydrogen Plasmas
    Cordes, C.
    Bornath, Th.
    Redmer, R.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2016, 56 (05) : 475 - 481
  • [47] Monte Carlo simulation of partially confined flexible polymers
    Hermsen, GF
    de Geeter, BA
    van der Vegt, NFA
    Wessling, M
    MACROMOLECULES, 2002, 35 (13) : 5267 - 5272
  • [48] Comparison of Asymptotically Unbiased Extreme Value Index estimators: a Monte Carlo Simulation Study
    Caeiro, Frederico
    Gomes, M. Ivette
    INTERNATIONAL CONFERENCE OF COMPUTATIONAL METHODS IN SCIENCES AND ENGINEERING 2014 (ICCMSE 2014), 2014, 1618 : 551 - 554
  • [49] Robust linear regression using smooth adaptive estimators
    Lo, SC
    Han, CP
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1997, 26 (01) : 1 - 19
  • [50] Robust linear regression using smooth adaptive estimators
    Natl Taipei Inst of Technology, Taipei, Taiwan
    Commun Stat Part B Simul Comput, 1 (1-19):