State-Space Control of Nonlinear Systems Identified by ANARX and Neural Network based SANARX Models

被引:0
|
作者
Vassiljeva, K. [1 ]
Petlenkov, E. [1 ]
Belikov, J. [2 ]
机构
[1] Tallinn Univ Technol, Dept Comp Control, EE-19086 Tallinn, Estonia
[2] Tallinn Univ Technol, Inst Cybernet, EE-12618 Tallinn, Estonia
来源
2010 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS IJCNN 2010 | 2010年
关键词
state-space control; nonlinear control systems; ANARX model; neural networks and dynamic feedback linearization; REALIZABILITY; DESIGN;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A state-space technique for control of nonlinear SISO systems identified by an Additive Nonlinear Autoregressive eXogenous (ANARX) model is presented. Two cases are shown. In the first case system model is given explicitly in the form of ANARX structure. In the second case controlled system is identified by Neural Network based Simplified Additive NARX (NN-SANARX) model linearized by dynamic feedback. The neural network based model is represented in the discrete-time state-space form. The effectiveness of the approach proposed in the paper is demonstrated on numerical examples with SISO and MIMO systems.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] State inference in variational Bayesian nonlinear state-space models
    Raiko, T
    Tornio, M
    Honkela, A
    Karhunen, J
    INDEPENDENT COMPONENT ANALYSIS AND BLIND SIGNAL SEPARATION, PROCEEDINGS, 2006, 3889 : 222 - 229
  • [32] Gaussian Variational State Estimation for Nonlinear State-Space Models
    Courts, Jarrad
    Wills, Adrian
    Schon, Thomas
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 5979 - 5993
  • [33] STATE-SPACE MODELS OF LUMPED AND DISTRIBUTED SYSTEMS
    KECMAN, V
    LECTURE NOTES IN CONTROL AND INFORMATION SCIENCES, 1988, 112 : 1 - &
  • [34] Decoupling nonlinear state-space models: case studies
    Dreesen, Philippe
    Esfahani, Alireza Fakhrizadeh
    Stoev, Julian
    Tiels, Koen
    Schoukens, Johan
    PROCEEDINGS OF ISMA2016 INTERNATIONAL CONFERENCE ON NOISE AND VIBRATION ENGINEERING AND USD2016 INTERNATIONAL CONFERENCE ON UNCERTAINTY IN STRUCTURAL DYNAMICS, 2016, : 2639 - 2646
  • [35] Learning nonlinear state-space models using autoencoders
    Masti, Daniele
    Bemporad, Alberto
    AUTOMATICA, 2021, 129
  • [36] Robust identification approach for nonlinear state-space models
    Liu, Xin
    Yang, Xianqiang
    NEUROCOMPUTING, 2019, 333 : 329 - 338
  • [37] Decoupling Multivariate Polynomials for Nonlinear State-Space Models
    Decuyper, Jan
    Dreesen, Philippe
    Schoukens, Johan
    Runacres, Mark C.
    Tiels, Koen
    IEEE CONTROL SYSTEMS LETTERS, 2019, 3 (03): : 745 - 750
  • [38] Parameter estimation in a class of nonlinear state-space models
    Enescu, Mihai
    Koivunen, Visa
    2005 IEEE/SP 13TH WORKSHOP ON STATISTICAL SIGNAL PROCESSING (SSP), VOLS 1 AND 2, 2005, : 193 - 196
  • [39] Variational system identification for nonlinear state-space models
    Courts, Jarrad
    Wills, Adrian G.
    Schon, Thomas B.
    Ninness, Brett
    AUTOMATICA, 2023, 147
  • [40] Identification of Mixed Linear/Nonlinear State-Space Models
    Lindsten, Fredrik
    Schon, Thomas B.
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 6377 - 6382