Impact of Protecting Ligands on Surface Structure and Antibacterial Activity of Silver Nanoparticles

被引:52
|
作者
Padmos, J. Daniel [1 ]
Boudreau, Robert T. M. [1 ,3 ]
Weaver, Donald F. [1 ,2 ,3 ,4 ]
Zhang, Peng [1 ,2 ]
机构
[1] Dalhousie Univ, Dept Chem, Halifax, NS B3H 4R2, Canada
[2] Dalhousie Univ, Sch Biomed Engn, Halifax, NS B3H 4R2, Canada
[3] IWK Hlth Ctr, Cheminformat & Drug Discovery Lab, Halifax, NS B3K 6R8, Canada
[4] Univ Toronto, Toronto Western Res Inst, Toronto, ON M5G 2M9, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
ESCHERICHIA-COLI; STAPHYLOCOCCUS-AUREUS; GOLD NANOPARTICLES; RESPIRATORY-CHAIN; TOXICITY; DISSOLUTION; SPECTROSCOPY; MECHANISMS; IONS; PVP;
D O I
10.1021/acs.langmuir.5b00049
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Silver nanopartides (Ag NPs) have attracted much attention in the past decade because of their unique physicochemical properties and notable antibacterial activities. In particular, thiol-protected Ag NPS have come to the forefront of metal nanoparticle studies, as they have been shown to possess high stability and interesting structure property relationships. However, a clear correlation between thiol-protecting ligands, the resulting Ag NP surface structure, and their antibacterial properties has yet to be determined. Here, a multielement (Ag and 5), multi-edge (Ag K-edge, Ag L-3-edge, S K-edge) X-ray absorption spectroscopy (XAS) methodology was ried to identify the structure and composition of Ag NPs protected with cysteine. XAS characterization was carried out on similar-sized Ag NPs protected with poly(vinylpyrrolidone) (PVP), in order to provide a valid comparison of the ligand effect on surface structure. The PVP-Ag NPs showed a metallic Ag surface and composition, consistent with metal NPs protected by weak protecting ligands. On the other hand, the Cys-Ag NPs exhibited a distinct surface shell of silver sulfide, which is remarkably different than previously studied Cys-Ag NPs. The minimum inhibitory concentration (MIC) of both types of Ag NPs against Gram-positive (+) and Gram-negative (-) bacteria were tested, including Staphylococcus aureus (+), Escherichia coli (-), and Pseudomonas aeruginosa (-). It was found that the MICs of the Cys-Ag NPs were significantly lower than the PVP-Ag NPs for each bacteria, implicating the influence of the sulfidized surface structure. Overall, this work shows the effect of ligand on the surface structure of Ag NPs, as well as the importance of surface structure in controlling antibacterial activity.
引用
收藏
页码:3745 / 3752
页数:8
相关论文
共 50 条
  • [21] Green Synthesis of Silver Nanoparticles and Their Antibacterial Activity
    Balazova, L'udmila
    Cizmarova, Anna
    Balaz, Matej
    Daneu, Nina
    Salayova, Aneta
    Bedlovicova, Zdenka
    Tkacikova, L'udmila
    CHEMICKE LISTY, 2022, 116 (02): : 135 - 140
  • [22] Mycosynthesis of silver nanoparticles bearing antibacterial activity
    Azmath, Pasha
    Baker, Syed
    Rakshith, Devaraju
    Satish, Sreedharamurthy
    SAUDI PHARMACEUTICAL JOURNAL, 2016, 24 (02) : 140 - 146
  • [23] Silver Nanoparticles: Synthesis, Characterization and Antibacterial Activity
    Calinescu, Ioan
    Mustatea, Gabriel
    Gavrila, Adina Ionuta
    Dobre, Alina
    Pop, Cristina
    REVISTA DE CHIMIE, 2014, 65 (01): : 15 - 19
  • [24] Antibacterial Activity of Silver Nanoparticles: Structural Effects
    Tang, Shaoheng
    Zheng, Jie
    ADVANCED HEALTHCARE MATERIALS, 2018, 7 (13)
  • [25] Silver ions and silver nanoparticles in zeolite A composites for antibacterial activity
    Jiraroj, Duangkamon
    Tungasmita, Sukkaneste
    Tungasmita, Duangamol N.
    POWDER TECHNOLOGY, 2014, 264 : 418 - 422
  • [26] Static friction, surface roughness, and antibacterial activity of orthodontic brackets coated with silver and silver chitosan nanoparticles
    Tawakal, Magda Shaban
    Metwally, Amr Mohamed Abdelghany
    El-Wassefy, Noha A.
    Tawfik, Marwa Ali
    Shamaa, Marwa Sameh
    JOURNAL OF THE WORLD FEDERATION OF ORTHODONTISTS, 2023, 12 (06) : 260 - 268
  • [27] Structure Activity Relationship of Membrane-Targeting Cationic Ligands on a Silver Nanoparticle Surface in an Antibiotic-Resistant Antibacterial and Antibiofilm Activity Assay
    Dai, Xiaomei
    Chen, Xuelei
    Zhao, Jing
    Zhao, Yu
    Guo, Qianqian
    Zhang, Tianqi
    Chu, Chunli
    Zhang, Xinge
    Li, Chaoxing
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (16) : 13837 - 13848
  • [28] Investigation of antibacterial activity of silver nanoparticles against staphylococcus aureus strain Silver nanoparticles
    Kizilyildirim, Suna
    Guneri, Cansu Onlen
    ANNALS OF CLINICAL AND ANALYTICAL MEDICINE, 2023, 14
  • [29] DEPENDENCE OF ANTIBACTERIAL PROPERTIES OF SILVER NANOPARTICLES ON THEIR SURFACE MODIFICATION
    Cihalova, Kristyna
    Brezinova, Karolina
    Stankova, Martina
    Docekalova, Michaela
    Uhlirova, Dagmar
    Kepinska, Marta
    Sochor, Jiri
    Milnerowicz, Halina
    Fernandez, Carlos
    Zidkova, Jarmila
    Kizek, Rene
    9TH INTERNATIONAL CONFERENCE ON NANOMATERIALS - RESEARCH & APPLICATION (NANOCON 2017), 2018, : 692 - 697
  • [30] Deposition of silver nanoparticles on titanium surface for antibacterial effect
    Liao Juan
    Zhu Zhimin
    Mo Anchun
    Li Lei
    Zhang Jingchao
    INTERNATIONAL JOURNAL OF NANOMEDICINE, 2010, 5 : 261 - 267