Proton conducting membranes for hydrogen and ammonia production

被引:14
|
作者
Weng, Guowei [1 ]
Ouyang, Kun [1 ]
Lin, Xuanhe [1 ]
Xue, Jian [1 ]
Wang, Haihui [2 ]
机构
[1] South China Univ Technol, Sch Chem & Chem Engn, Guangdong Prov Key Lab Green Chem Prod Technol, 381 Wushan Rd, Guangzhou 510640, Peoples R China
[2] Tsinghua Univ, Beijing Key Lab Membrane Mat & Engn, Dept Chem Engn, Beijing 100084, Peoples R China
来源
REACTION CHEMISTRY & ENGINEERING | 2021年 / 6卷 / 10期
基金
国家重点研发计划;
关键词
HOLLOW-FIBER MEMBRANES; CERAMIC ELECTROCHEMICAL-CELLS; FUEL-CELLS; ATMOSPHERIC-PRESSURE; INTERMEDIATE TEMPERATURE; COMPOSITE ELECTROLYTE; LANTHANUM TUNGSTATE; NITROGEN REDUCTION; WATER ELECTROLYSIS; STEAM ELECTROLYSIS;
D O I
10.1039/d1re00207d
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen and ammonia are ubiquitous chemical raw materials with a wide range of industrial applications. Methane steam reforming and Haber-Bosch process are the most commonly used industrial technologies for hydrogen production and ammonia synthesis. However, these processes are energy intensive with high CO2 emissions. In this review, promising technologies for hydrogen and ammonia production based on dense proton conducting membrane reactors are comprehensively introduced and relative developments and challenges are summarized, including membrane materials, operating temperatures, and hydrogen sources, along with their properties and performance. For each application, the future research goals to overcome relative challenges are analyzed, and the prospective developments to meet the industrial requirements are discussed.
引用
收藏
页码:1739 / 1770
页数:32
相关论文
共 50 条
  • [31] Composite proton-conducting membranes with nanodiamonds
    Kulvelis, Yu. V.
    Primachenko, O. N.
    Odinokov, A. S.
    Shvidchenko, A. V.
    Bayramukov, V. Yu.
    Gofman, I. V.
    Lebedev, V. T.
    Ivanchev, S. S.
    Vul, A. Ya.
    Kuklin, A. I.
    Wu, B.
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2020, 28 (02) : 140 - 146
  • [32] Electrochemical AFM Investigations of Proton Conducting Membranes
    Hink, S.
    Aleksandrova, E.
    Roduner, E.
    POLYMER ELECTROLYTE FUEL CELLS 10, PTS 1 AND 2, 2010, 33 (01): : 57 - 70
  • [33] Transport properties of hydroxide and proton conducting membranes
    Hibbs, Michael R.
    Hickner, Michael Ai
    Alam, Todd M.
    McIntyre, Sarah K.
    Fujimoto, Cy H.
    Cornelius, Chris J.
    CHEMISTRY OF MATERIALS, 2008, 20 (07) : 2566 - 2573
  • [34] Composite proton-conducting membranes for PEMFCs
    Mustarelli, P.
    Carollo, A.
    Grandi, S.
    Quartarone, E.
    Tomasi, C.
    Leonardi, S.
    Magistris, A.
    FUEL CELLS, 2007, 7 (06) : 441 - 446
  • [35] Hydrogen gas sensing by sol-gel-derived proton-conducting glass membranes
    Nogami, M
    Matsushita, H
    Kasuga, T
    Hayakawa, T
    ELECTROCHEMICAL AND SOLID STATE LETTERS, 1999, 2 (08) : 415 - 417
  • [36] Proton conducting perovskite hollow fibre membranes with surface catalytic modification for enhanced hydrogen separation
    Song, Jian
    Kang, Jian
    Tan, Xiaoyao
    Meng, Bo
    Liu, Shaomin
    JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2016, 36 (07) : 1669 - 1677
  • [37] Fabrication of solid proton conducting high performance composite membranes for the application of hydrogen fuel cells
    Bin Yousaf, Ammar
    Rauf, Md Abdur
    Zaidi, Syed Javaid
    DESALINATION AND WATER TREATMENT, 2019, 150 : 84 - 90
  • [38] Hydrogen Separation and Production using Proton-Conducting Ceramic Membrane Catalytic Reactors
    Seo, Minhye
    Park, Eun Duck
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2019, 57 (05): : 596 - 605
  • [39] Electrochemical modeling of hydrogen production by proton-conducting solid oxide steam electrolyzer
    Ni, Meng
    Leung, Michael K. H.
    Leung, Dennis Y. C.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2008, 33 (15) : 4040 - 4047
  • [40] Hydrogen production by water dissociation using mixed-conducting dense ceramic membranes
    Balachandran, U. Balu
    Lee, T. H.
    Song, S. J.
    Chen, Ling
    Dorris, Steven E.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2006, 231