Cross-domain Recommendation with Consistent Knowledge Transfer by Subspace Alignment

被引:3
|
作者
Zhang, Qian [1 ]
Lu, Jie [1 ]
Wu, Dianshuang [1 ]
Zhang, Guangquan [1 ]
机构
[1] Univ Technol, Fac Engn & Informat Technol, Ctr Artificial Intelligence, Decis Syst & E Serv Intelligence Lab, Sydney, NSW, Australia
关键词
Recommender systems; Cross-domain recommender systems; Knowledge transfer; Collaborative filtering; SYSTEM;
D O I
10.1007/978-3-030-02925-8_5
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recommender systems have drawn great attention from both academic area and practical websites. One challenging and common problem in many recommendation methods is data sparsity, due to the limited number of observed user interaction with the products/services. Cross-domain recommender systems are developed to tackle this problem through transferring knowledge from a source domain with relatively abundant data to the target domain with scarce data. Existing cross-domain recommendation methods assume that similar user groups have similar tastes on similar item groups but ignore the divergence between the source and target domains, resulting in decrease in accuracy. In this paper, we propose a cross-domain recommendation method transferring consistent group-level knowledge through aligning the source subspace with the target one. Through subspace alignment, the discrepancy caused by the domain-shift is reduced and the knowledge shared local top-n recommendation via refined item-user bi-clustering two domains is ensured to be consistent. Experiments are conducted on five real-world datasets in three categories: movies, books and music. The results for nine cross-domain recommendation tasks show that our proposed method has improved the accuracy compared with five benchmarks.
引用
收藏
页码:67 / 82
页数:16
相关论文
共 50 条
  • [41] Deep Cross-Domain Fashion Recommendation
    Jaradat, Shatha
    PROCEEDINGS OF THE ELEVENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS (RECSYS'17), 2017, : 407 - 410
  • [42] Neural Attentive Cross-Domain Recommendation
    Rafailidis, Dimitrios
    Crestani, Fabio
    PROCEEDINGS OF THE 2019 ACM SIGIR INTERNATIONAL CONFERENCE ON THEORY OF INFORMATION RETRIEVAL (ICTIR'19), 2019, : 164 - 171
  • [43] Explainable Cross-Domain Collaborator Recommendation
    Hu, Zhenyu
    Zhou, Jingya
    Zhang, Congcong
    Shi, Yingdan
    PROCEEDINGS OF THE 2024 27 TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, CSCWD 2024, 2024, : 3224 - 3229
  • [44] Cross-domain recommendation with user personality
    Wang, Hanfei
    Zuo, Yuan
    Li, Hong
    Wu, Junjie
    KNOWLEDGE-BASED SYSTEMS, 2021, 213 (213)
  • [45] Graph Disentangled Contrastive Learning with Personalized Transfer for Cross-Domain Recommendation
    Liu, Jing
    Sun, Lele
    Nie, Weizhi
    Jing, Peiguang
    Su, Yuting
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 8, 2024, : 8769 - 8777
  • [46] Multi-graph Convolutional Feature Transfer for Cross-domain Recommendation
    Zhang, Yanling
    Liu, Zhen
    Ma, Ying
    Gao, Yibo
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [47] Contrastive Cross-domain Recommendation in Matching
    Xie, Ruobing
    Liu, Qi
    Wang, Liangdong
    Liu, Shukai
    Zhang, Bo
    Lin, Leyu
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 4226 - 4236
  • [48] Cross-Domain Recommendation with Adversarial Examples
    Yan, Haoran
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Wang, Deqing
    Liu, Yanchi
    Sheng, Victor S.
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2020), PT III, 2020, 12114 : 573 - 589
  • [49] Cross-Domain Recommendation Method in Tourism
    QingQi
    JianCao
    Tan, Yudong
    Xiao, Quanwu
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 106 - 112
  • [50] REMIT: Reinforced Multi-Interest Transfer for Cross-Domain Recommendation
    Sun, Caiqi
    Gu, Jiewei
    Hu, BinBin
    Dong, Xin
    Li, Hai
    Cheng, Lei
    Mo, Linjian
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 8, 2023, : 9900 - 9908