Potassium catalysis in the pyrolysis behaviour of short rotation willow coppice

被引:301
|
作者
Nowakowski, Daniel J.
Jones, Jenny M. [1 ]
Brydson, Rik M. D.
Ross, Andrew B.
机构
[1] Univ Leeds, SPEME, Energy & Resources Res Inst, Leeds LS2 9JT, W Yorkshire, England
[2] Univ Leeds, SPEME, Inst Mat Res, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
biomass; pyrolysis; catalysis; potassium; mechanism;
D O I
10.1016/j.fuel.2007.01.026
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Short rotation willow coppice (SRC) and a synthetic biomass, a mixture of the basic biomass components (cellulose, hemicellulose and lignin), have been investigated for the influence of potassium on their pyrolysis behaviours. The willow sample was pre-treated to remove salts and metals by hydrochloric acid, and this demineralised sample was impregnated with potassium. The same type of pre-treatment was applied to components of the synthetic biomass. Characterisation was performed using thermogravimetric analysis with measurement of products by means of Fourier transform infrared spectroscopy (TGA-FTIR) and pyrolysis-gas chromatography-mass spectrometry (PY-GC-MS). A comparison of product distributions and kinetics are reported. While the general features of decomposition of SRC are described well by an additive behaviour of the individual components, there are some differences in the magnitude of the influence of potassium, and on the products produced. For both SRC and the synthetic biomass, TGA traces indicate catalytic promotion of both of the two-stages of biomass decomposition, and potassium can lower the average apparent first-order activation energy for pyrolysis by up to 50 kJ/mol. For both SRC and synthetic biomass the yields and distribution of pyrolysis products have been influenced by the presence of the catalyst. Potassium catalysed pyrolysis increases the char yields markedly and this is more pronounced for synthetic biomass than SRC. Gas evolution profiles during pyrolysis show the same general features for both SRC and synthetic biomass. Relative methane yields increase during the char formation stage of pyrolysis of the potassium doped samples. The evolution profiles of acetic acid and formaldehyde change, and these products are seen in lower relative amounts for both the demineralised samples. A greater variation in pyrolysis products is observed from the treated SRC samples compared to the different synthetic biomass samples. Furthermore, substituted phenols from lignin pyrolysis are more dominant in the pyrolysis profiles of the synthetic biomass than of the SRC, implying that the extracted lignins used in the synthetic biomass yield a greater fraction of monomeric type species than the lignocellulosic cell wall material of SRC. For both types of samples, PY-GS-MS analyses show that potassium has a significant influence on cellulose decomposition markers, not just on the formation of levoglucosan, but also other species from the noncatalysed mechanism, such as 3,4-dihydroxy-3-cyclobutene-1,2-dione. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:2389 / 2402
页数:14
相关论文
共 50 条
  • [31] Impact of short-rotation coppice with poplar and willow on soil physical properties
    Kahle, Petra
    Janssen, Manon
    JOURNAL OF PLANT NUTRITION AND SOIL SCIENCE, 2020, 183 (02) : 119 - 128
  • [32] Development of short-rotation willow coppice systems for environmental purposes in Sweden
    Mirck, J
    Isebrands, JG
    Verwijst, T
    Ledin, S
    BIOMASS & BIOENERGY, 2005, 28 (02): : 219 - 228
  • [33] Second rotation willow coppice in upland Wales
    Slater, FM
    Heaton, RJ
    Samuel, RW
    Randerson, PF
    BIOMASS: A GROWTH OPPORTUNITY IN GREEN ENERGY AND VALUE-ADDED PRODUCTS, VOLS 1 AND 2, 1999, : 45 - 45
  • [34] Plant sex effects on insect herbivores and biological control in a Short Rotation Coppice willow
    Moritz, Kim K.
    Bjorkman, Christer
    Parachnowitsch, Amy L.
    Stenberg, Johan A.
    BIOLOGICAL CONTROL, 2017, 115 : 30 - 36
  • [35] Growth Performance of Willow Clones in Short Rotation Coppice after Sewage Sludge Application
    Heinsoo, Katrin
    Dimitriou, Ioannis
    BALTIC FORESTRY, 2014, 20 (01) : 70 - 77
  • [36] Treatment and valorization of a primary municipal wastewater by a short rotation willow coppice vegetation filter
    Lachapelle-T, Xavier
    Labrecque, Michel
    Comeau, Yves
    ECOLOGICAL ENGINEERING, 2019, 130 : 32 - 44
  • [37] Use of municipal wastewater and composted wastewater sludge in willow short rotation coppice in Estonia
    Heinsoo, K.
    Holm, B.
    CONSTRUCTION FOR A SUSTAINABLE ENVIRONMENT, 2010, : 463 - 470
  • [38] Yield and spatial supply of bioenergy poplar and willow short-rotation coppice in the UK
    Aylott, Matthew J.
    Casella, E.
    Tubby, I.
    Street, N. R.
    Smith, P.
    Taylor, Gail
    NEW PHYTOLOGIST, 2008, 178 (02) : 358 - 370
  • [39] Energy partitioning in relation to leaf area development of short-rotation willow coppice
    Iritz, Z
    Lindroth, A
    AGRICULTURAL AND FOREST METEOROLOGY, 1996, 81 (1-2) : 119 - 130
  • [40] THE PERFORMANCE OF POLYCLONAL STANDS IN SHORT-ROTATION COPPICE WILLOW FOR ENERGY-PRODUCTION
    DAWSON, WM
    MCCRACKEN, AR
    BIOMASS & BIOENERGY, 1995, 8 (01): : 1 - 5