Vapor-Phase Formation of a Hole-Transporting Thiophene Polymer Layer for Evaporated Perovskite Solar Cells

被引:17
|
作者
Suwa, Koki [3 ,4 ]
Cojocaru, Ludmila [1 ]
Wienands, Karl [1 ]
Hofmann, Clarissa [2 ,5 ]
Schulze, Patricia S. C. [2 ]
Bett, Alexander J. [2 ]
Winkler, Kristina [2 ]
Goldschmidt, Jan Christoph [2 ]
Glunz, Stefan W. [1 ,2 ]
Nishide, Hiroyuki [3 ,4 ]
机构
[1] Univ Freiburg, Dept Sustainable Syst Engn INATECH, Lab Photovolta Energy Convers, D-79110 Freiburg, Germany
[2] Fraunhofer Inst Solar Energy Syst ISE, D-79110 Freiburg, Germany
[3] Waseda Univ, Dept Appl Chem, Tokyo 1698555, Japan
[4] Waseda Univ, Res Inst Sci & Engn, Tokyo 1698555, Japan
[5] KIT, Inst Microstruct Technol, D-76344 Karlsruhe, Germany
关键词
in situ polymerization; thiophene; terthiophene polymer; hole-transporting polymer; co-evaporation perovskite; solar cell;
D O I
10.1021/acsami.9b20981
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Homogeneous layer formation on textured silicon substrates is essential for the fabrication of highly efficient monolithic perovskite silicon tandem solar cells. From all well-known techniques for the fabrication of perovskite solar cells (PSCs), the evaporation method offers the highest degree of freedom for layer-by-layer deposition independent of the substrate's roughness or texturing. Hole-transporting polymers with high hole mobility and structural stability have been used as effective hole-transporting materials (HTMs) of PSCs. However, the strong intermolecular interactions of the polymers do not allow for a layer formation via the evaporation method, which is a big challenge for the perovskite community. Herein, we first applied a hole transporting terthiophene polymer (PTTh) as an HTM for evaporated PSCs via an in situ vapor-phase polymerization using iodine (I-2) as a sublimable oxidative agent. PTTh showed high hole mobility of 1.2 x 10(-3) cm(2)/(V s) and appropriate energy levels as HTM in PSCs (E-Homo = -5.3 eV and E-Lumo = -3.3 eV). The PSCs with the in situ vapor-phase polymerized PTTh hole-transporting layer and a co-evaporated perovskite layer exhibited a photovoltaic conversion efficiency of 5.9%, as a proof of concept, and high cell stability over time. Additionally, the polymer layer could fully cover the pyramidal structure of textured silicon substrates and was identified as an effective hole-transporting material for perovskite silicon tandem solar cells by optical simulation.
引用
收藏
页码:6496 / 6502
页数:7
相关论文
共 50 条
  • [41] A molecularly engineered hole-transporting material for efficient perovskite solar cells
    Saliba, Michael
    Orlandi, Simonetta
    Matsui, Taisuke
    Aghazada, Sadig
    Cavazzini, Marco
    Correa-Baena, Juan-Pablo
    Gao, Peng
    Scopelliti, Rosario
    Mosconi, Edoardo
    Dahmen, Klaus-Hermann
    De Angelis, Filippo
    Abate, Antonio
    Hagfeldt, Anders
    Pozzi, Gianluca
    Graetzel, Michael
    Nazeeruddin, Mohammad Khaja
    NATURE ENERGY, 2016, 1
  • [42] Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells
    Xueyuan Liu
    Fei Zhang
    Xicheng Liu
    Mengna Sun
    Shirong Wang
    Dongmei Li
    Qingbo Meng
    Xianggao Li
    Journal of Energy Chemistry , 2016, (04) : 702 - 708
  • [43] Review of current progress in hole-transporting materials for perovskite solar cells
    Mahajan, Prerna
    Padha, Bhavya
    Verma, Sonali
    Gupta, Vinay
    Datt, Ram
    Tsoi, Wing Chung
    Satapathi, Soumitra
    Arya, Sandeep
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 330 - 386
  • [44] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    Lin Lin-Lin
    Tu Yong-Guang
    Tang Chang-Quan
    Ma Yun-Long
    Chen Shan-Ci
    Yin Zhi-Gang
    Wei Jia-Jun
    Zheng Qing-Dong
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2016, 35 (10) : 1517 - 1524
  • [45] Truxene-based Hole-transporting Materials for Perovskite Solar Cells
    林琳琳
    涂用广
    汤昌泉
    马云龙
    陈善慈
    尹志刚
    魏佳骏
    郑庆东
    结构化学, 2016, 35 (10) : 1517 - 1524
  • [46] Effects of hole-transporting layers of perovskite-based solar cells
    Suzuki, Atsushi
    Kida, Tomoyasu
    Takagi, Tatsuru
    Oku, Takeo
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2016, 55 (02)
  • [47] Application of phenonaphthazine derivatives as hole-transporting materials for perovskite solar cells
    Xueyuan Liu
    Fei Zhang
    Xicheng Liu
    Mengna Sun
    Shirong Wang
    Dongmei Li
    Qingbo Meng
    Xianggao Li
    Journal of Energy Chemistry, 2016, 25 (04) : 702 - 708
  • [48] Hole-Transporting Materials for Perovskite Solar Cells Employing an Anthradithiophene Core
    Santos, Jose
    Calbo, Joaquin
    Sandoval-Torrientes, Rafael
    Garcia-Benito, Ines
    Kanda, Hiroyuki
    Zimmermann, Iwan
    Arago, Juan
    Nazeeruddin, Mohammad Khaja
    Orti, Enrique
    Martin, Nazario
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (24) : 28214 - 28221
  • [49] Tetraphenylmethane-Arylamine Hole-Transporting Materials for Perovskite Solar Cells
    Liu, Xuepeng
    Kong, Fantai
    Cheng, Tai
    Chen, Wangchao
    Tan, Zhan'ao
    Yu, Ting
    Guo, Fuling
    Chen, Jian
    Yao, Jianxi
    Dai, Songyuan
    CHEMSUSCHEM, 2017, 10 (05) : 968 - 975
  • [50] A Dual-Functional Conjugated Polymer as an Efficient Hole-Transporting Layer for High-Performance Inverted Perovskite Solar Cells
    Liao, Qiaogan
    Wang, Yang
    Yao, Xiyu
    Su, Mengyao
    Li, Bolin
    Sun, Huiliang
    Huang, Jiachen
    Guo, Xugang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (14) : 16744 - 16753