Grand quasi Lebesgue spaces

被引:6
|
作者
Formica, Maria Rosaria [1 ]
Ostrovsky, Eugeny [2 ]
Sirota, Leonid [2 ]
机构
[1] Univ Napoli Parthenope, Via Gen Parisi 13, I-80132 Naples, Italy
[2] Bar Ilan Univ, Dept Math & Stat, IL-52900 Ramat Can, Israel
关键词
Lebesgue-Riesz spaces; Quasi-Banach spaces; Grand quasi Lebesgue Spaces; Tail function; Contraction principle; Hardy operators; INEQUALITY;
D O I
10.1016/j.jmaa.2021.125369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a new class of quasi-Banach spaces as an extension of the classical Grand Lebesgue Spaces for "small" values of the parameter, and we investigate some its properties, in particular, completeness, fundamental function, operators estimates, Boyd indices, contraction principle, tail behavior, dual space, generalized triangle and quadrilateral constants and inequalities. (c) 2021 Elsevier Inc. All rights reserved.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Sawyer Duality Principle in Grand Lebesgue Spaces
    Jain, P.
    Singh, A. P.
    Singh, M.
    Stepanov, V. D.
    DOKLADY MATHEMATICS, 2018, 97 (01) : 18 - 19
  • [32] A note on the continuity of minors in grand Lebesgue spaces
    Anastasia Molchanova
    Journal of Fixed Point Theory and Applications, 2019, 21
  • [33] Grand Lebesgue spaces with respect to measurable functions
    Capone, Claudia
    Formica, Maria Rosaria
    Giova, Raffaella
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2013, 85 : 125 - 131
  • [34] The maximal theorem for weighted grand Lebesgue spaces
    Fiorenza, Alberto
    Gupta, Babita
    Jain, Pankaj
    STUDIA MATHEMATICA, 2008, 188 (02) : 123 - 133
  • [35] Local grand variable exponent Lebesgue spaces
    Rafeiro, Humberto
    Samko, Stefan
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2023, 42 (1-2): : 1 - 15
  • [36] On grand Lebesgue spaces on sets of infinite measure
    Samko, Stefan
    Umarkhadzhiev, Salaudin
    MATHEMATISCHE NACHRICHTEN, 2017, 290 (5-6) : 913 - 919
  • [37] Generalized Grand Lebesgue Spaces Associated to Banach Function Spaces
    Salec, AliReza Bagheri
    Tabatabaie, Seyyed Mohammad
    Albeka, Alaa Mahdi Talib
    SAHAND COMMUNICATIONS IN MATHEMATICAL ANALYSIS, 2024, 21 (03): : 431 - 440
  • [38] EMBEDDING OF GRAND CENTRAL MORREY-TYPE SPACES INTO LOCAL GRAND WEIGHTED LEBESGUE SPACES
    Umarkhadzhiev S.M.
    Journal of Mathematical Sciences, 2022, 266 (3) : 483 - 490
  • [39] Hausdorff Operator on Weighted Lebesgue and Grand Lebesgue p-Adic Spaces
    Bandaliyev, R. A.
    Volosivets, S. S.
    P-ADIC NUMBERS ULTRAMETRIC ANALYSIS AND APPLICATIONS, 2019, 11 (02) : 114 - 122
  • [40] Hausdorff Operator on Weighted Lebesgue and Grand Lebesgue p-Adic Spaces
    R. A. Bandaliyev
    S. S. Volosivets
    p-Adic Numbers, Ultrametric Analysis and Applications, 2019, 11 : 114 - 122