Measurement of Ultrafast Vibrational Coherences in Polyatomic Radical Cations with Strong-Field Adiabatic Ionization

被引:4
|
作者
Boateng, Derrick Ampadu [1 ]
Tibbetts, Katharine Moore [1 ]
机构
[1] Virginia Commonwealth Univ, Dept Chem, Richmond, VA 23284 USA
来源
关键词
Chemistry; Issue; 138; Femtochemistry; pump-probe experiment; mass spectrometry; coherent control; vibrational wave packet; strong-field ionization; radical cation; molecular physics; NONADIABATIC MULTIELECTRON DYNAMICS; MASS-SPECTROMETRY; RESOLUTION; PHASE; OSCILLATIONS; MOLECULES; CHEMISTRY; PULSES; STATE;
D O I
10.3791/58263
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present a pump-probe method for preparing vibrational coherences in polyatomic radical cations and probing their ultrafast dynamics. By shifting the wavelength of the strong-field ionizing pump pulse from the commonly used 800 nm into the near-infrared (1200-1600 nm), the contribution of adiabatic electron tunneling to the ionization process increases relative to multiphoton absorption. Adiabatic ionization results in predominant population of the ground electronic state of the ion upon electron removal, which effectively prepares a coherent vibrational state ("wave packet") amenable to subsequent excitation. In our experiments, the coherent vibrational dynamics are probed with a weak-field 800 nm pulse and the time-dependent yields of dissociation products measured in a time-of-flight mass spectrometer. We present the measurements on the molecule dimethyl methylphosphonate (DMMP) to illustrate how using 1500 nm pulses for excitation enhances the amplitude of coherent oscillations in ion yields by a factor of 10 as compared to 800 nm pulses. This protocol may be implemented in existing pump-probe setups through the incorporation of an optical parametric amplifier (OPA) for wavelength conversion.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Molecular rotation in strong-field ionization
    Fischer, M.
    Handt, J.
    Rost, J. -M.
    Grossmann, F.
    Schmidt, R.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [22] CLASSICAL DYNAMICS OF STRONG-FIELD IONIZATION
    BOWDEN, CM
    SUNG, CC
    PETHEL, SD
    RITCHIE, AB
    PHYSICAL REVIEW A, 1992, 46 (01): : 592 - 596
  • [23] Quantum entanglement in strong-field ionization
    Majorosi, Szilard
    Benedict, Mihaly G.
    Czirjak, Attila
    PHYSICAL REVIEW A, 2017, 96 (04)
  • [24] Energetic electrons in strong-field ionization
    Reiss, HR
    PHYSICAL REVIEW A, 1996, 54 (03): : R1765 - R1768
  • [25] Nondipole effects in strong-field ionization
    Ivanov, I. A.
    Dubau, J.
    Kim, Kyung Taec
    PHYSICAL REVIEW A, 2016, 94 (03)
  • [26] Strong-field ionization of plasmonic nanoparticles
    Saydanzad, E.
    Li, J.
    Thumm, U.
    PHYSICAL REVIEW A, 2022, 106 (03)
  • [27] Strong-field ionization of complex molecules
    Wiese, Joss
    Onvlee, Jolijn
    Trippel, Sebastian
    Kuepper, Jochen
    PHYSICAL REVIEW RESEARCH, 2021, 3 (01):
  • [28] Energetic electrons in strong-field ionization
    Reiss, H.R.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1996, 54 (03):
  • [29] STRONG-FIELD PHYSICS Ionization surprise
    Faisal, Farhad H. M.
    NATURE PHYSICS, 2009, 5 (05) : 319 - 320
  • [30] Multichannel coherence in strong-field ionization
    Rohringer, Nina
    Santra, Robin
    PHYSICAL REVIEW A, 2009, 79 (05):