Taming the wrapping of integer arithmetic

被引:0
|
作者
Simon, Axel [1 ]
King, Andy [1 ]
机构
[1] Univ Kent, Comp Lab, Canterbury, Kent, England
来源
STATIC ANALYSIS, PROCEEDINGS | 2007年 / 4634卷
基金
英国工程与自然科学研究理事会;
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Variables in programs are usually confined to a fixed number of bits and results that require more bits are truncated. Due to the use of 32-bit and 64-bit variables, inadvertent overflows are rare. However, a sound static analysis must reason about overflowing calculations and conversions between unsigned and signed integers; the latter remaining a common source of subtle programming errors. Rather than polluting an analysis with the low-level details of modelling two's complement wrapping behaviour, this paper presents a computationally light-weight solution based on polyhedral analysis which eliminates the need to check for wrapping when evaluating most (particularly linear) assignments.
引用
收藏
页码:121 / +
页数:2
相关论文
共 50 条
  • [31] Taming the hydra: The word problem and extreme integer compression
    Dison, W.
    Einstein, E.
    Riley, T. R.
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2018, 28 (07) : 1299 - 1381
  • [32] Is integer arithmetic fundamental to mental processing?: the mind's secret arithmetic
    Snyder, AW
    Mitchell, DJ
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1999, 266 (1419) : 587 - 592
  • [33] The number of divisors of an integer in arithmetic progressions.
    Derbal, A
    Smati, A
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (02) : 87 - 90
  • [34] Local Search for SMT on Linear Integer Arithmetic
    Cai, Shaowei
    Li, Bohan
    Zhang, Xindi
    COMPUTER AIDED VERIFICATION (CAV 2022), PT II, 2022, 13372 : 227 - 248
  • [35] COUNTING INTEGER POINTS ON QUADRICS WITH ARITHMETIC WEIGHTS
    Kumaraswamy, V. Vinay
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2020, 373 (10) : 6929 - 6959
  • [36] A comparative study of arithmetic constraints on integer intervals
    Apt, KR
    Zoeteweij, P
    RECENT ADVANCES IN CONSTRAINTS, 2004, 3010 : 1 - 24
  • [37] Fast Integer Multiplication Using Modular Arithmetic
    De, Anindya
    Kurur, Piyush
    Saha, Chandan
    Saptharishi, Ramprasad
    STOC'08: PROCEEDINGS OF THE 2008 ACM INTERNATIONAL SYMPOSIUM ON THEORY OF COMPUTING, 2008, : 499 - 505
  • [38] SERIAL INTEGER ARITHMETIC WITH MAGNETIC-BUBBLES
    WILLIAMS, RP
    IEEE TRANSACTIONS ON COMPUTERS, 1977, 26 (03) : 260 - 264
  • [39] FAST INTEGER MULTIPLICATION USING MODULAR ARITHMETIC
    De, Anindya
    Kurur, Piyush P.
    Saha, Chandan
    Saptharishi, Ramprasad
    SIAM JOURNAL ON COMPUTING, 2013, 42 (02) : 685 - 699
  • [40] On the distribution of (k, r)-integer in an arithmetic progression
    Srichan, Teerapat
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2022, 132 (01):