Cauchy's integral formula via the modified Riemann-Liouville derivative for analytic functions of fractional order

被引:87
|
作者
Jumarie, Guy [1 ]
机构
[1] Univ Quebec, Dept Math, Montreal, PQ H3C 3P8, Canada
关键词
Fractional derivative; Fractional Taylor's series; Mittag-Leffler function; Analytic functions; Cauchy's integral formula; DIFFERENTIAL-EQUATIONS; BROWNIAN-MOTION; GROWTH; MODELS; SERIES;
D O I
10.1016/j.aml.2010.08.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The modified Riemann-Liouville fractional derivative applies to functions which are fractional differentiable but not differentiable, in such a manner that they cannot be analyzed by means of the Djrbashian fractional derivative. It provides a fractional Taylor's series for functions which are infinitely fractional differentiable, and this result suggests introducing a definition of analytic functions of fractional order. Cauchy's conditions for fractional differentiability in the complex plane and Cauchy's integral formula are derived for these kinds of functions. (C) 2010 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1444 / 1450
页数:7
相关论文
共 50 条
  • [41] The Riemann-Liouville fractional derivative for Ambartsumian equation
    El-Zahar, E. R.
    Alotaibi, A. M.
    Ebaid, A.
    Aljohani, A. F.
    Gomez Aguilar, J. F.
    RESULTS IN PHYSICS, 2020, 19
  • [42] Stability analysis of fractional-order systems with the Riemann-Liouville derivative
    Qin, Zhiquan
    Wu, Ranchao
    Lu, Yanfen
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2014, 2 (01): : 727 - 731
  • [43] On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative
    Merdan, Mehmet
    INTERNATIONAL JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 2012
  • [44] Applications of Fuzzy Differential Subordination to the Subclass of Analytic Functions Involving Riemann-Liouville Fractional Integral Operator
    Breaz, Daniel
    Khan, Shahid
    Tawfiq, Ferdous M. O.
    Tchier, Fairouz
    MATHEMATICS, 2023, 11 (24)
  • [45] NEW GENERALIZED RIEMANN-LIOUVILLE FRACTIONAL INTEGRAL INEQUALITIES FOR CONVEX FUNCTIONS
    Mohammed, Pshtiwan Othman
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2021, 15 (02): : 511 - 519
  • [46] THE UNIFIED RIEMANN-LIOUVILLE FRACTIONAL DERIVATIVE FORMULAE
    Soni, R. C.
    Singh, Deepika
    TAMKANG JOURNAL OF MATHEMATICS, 2005, 36 (03): : 231 - 236
  • [47] Fractional Order Riemann-Liouville Integral Equations with Multiple Time Delays
    Abbas, Said
    Benchohra, Mouffak
    APPLIED MATHEMATICS E-NOTES, 2012, 12 : 79 - 87
  • [48] An extension of Schweitzer's inequality to Riemann-Liouville fractional integral
    Abdeljawad, Thabet
    Meftah, Badreddine
    Lakhdari, Abdelghani
    Alqudah, Manar A.
    OPEN MATHEMATICS, 2024, 22 (01):
  • [49] Nonlinear Caputo Fractional Derivative with Nonlocal Riemann-Liouville Fractional Integral Condition Via Fixed Point Theorems
    Borisut, Piyachat
    Kumam, Poom
    Ahmed, Idris
    Sitthithakerngkiet, Kanokwan
    SYMMETRY-BASEL, 2019, 11 (06):
  • [50] An Optimal Quadrature Formula for Numerical Integration of the Right Riemann-Liouville Fractional Integral
    Hayotov, A. R.
    Babaev, S. S.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2023, 44 (10) : 4285 - 4298