Influence of Brine-Rock Parameters on Rock Physical Changes During CO2 Sequestration in Saline Aquifer

被引:9
|
作者
Yusof, Muhammad Aslam Md [1 ]
Mohamed, Muhammad Azfar [1 ]
Akhir, Nur Asyraf Md [1 ]
Ibrahim, Mohamad Arif [2 ]
Saaid, Ismail M. [1 ]
Idris, Ahmad Kamal [2 ]
Idress, Mazlin [1 ]
Matali, Awangku Alizul Azahari Awangku [3 ]
机构
[1] Univ Teknol PETRONAS, Fac Engn, Dept Petr Engn, Block 12-03-30, Seri Iskandar 32610, Perak, Malaysia
[2] Univ Teknol Malaysia, Skudai 81310, Johor, Malaysia
[3] Vestigo Petr, Kuala Lumpur 50450, Malaysia
关键词
CO2; sequestration; Taguchi method; Mineral dissolution; Salt precipitation; Fines migration; CARBON-DIOXIDE; SALT PRECIPITATION; MINERAL DISSOLUTION; INJECTION; STORAGE; WELL; PERMEABILITY; RESERVOIR; KETZIN; DESIGN;
D O I
10.1007/s13369-021-06110-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Injection of carbon dioxide (CO2) into saline aquifer for sequestration is a promising approach to mitigate the climate issue. However, reactive interactions between various CO2-brine-rock parameters have significantly affected the CO2 sequestration. Factors such as brine type, brine salinity, reactive pore surface area and contact time were found to significantly alter the physical rock properties. Until now, a systematic study on the dominance and degree of influence of each factor has yet to be carried out. To further understand environmental factors that impact dissolution and precipitation mechanisms, we combined the four influencing factors in static batch experiments and observed the physical changes on formation rock and ranked them according to the level of dominance by using Taguchi method. Static batch CO2-brine-rock experiments were carried out by injecting supercritical CO2 in an aging cell filled with brines and cubes of rock samples. The results showed that brine salinity is the most notable factor, followed by reactive pore surface area and duration of exposure. Comparison of field emission scanning electron microscope images taken before and after experiments indicated changes among potassium chloride (KCl), sodium chloride (NaCl) and calcium chloride (CaCl2) brines resulting in dramatic changes of pore spaces because of mineral dissolution, deposited salts, and fines migration.
引用
收藏
页码:11345 / 11359
页数:15
相关论文
共 50 条
  • [1] Influence of Brine–Rock Parameters on Rock Physical Changes During CO2 Sequestration in Saline Aquifer
    Muhammad Aslam Md Yusof
    Muhammad Azfar Mohamed
    Nur Asyraf Md Akhir
    Mohamad Arif Ibrahim
    Ismail M. Saaid
    Ahmad Kamal Idris
    Mazlin Idress
    Awangku Alizul Azahari Awangku Matali
    Arabian Journal for Science and Engineering, 2022, 47 : 11345 - 11359
  • [2] Experimental Investigation and Numerical Simulation of CO2-Brine-Rock Interactions during CO2 Sequestration in a Deep Saline Aquifer
    Liu, Bo
    Zhao, Fangyuan
    Xu, Jinpeng
    Qi, Yueming
    SUSTAINABILITY, 2019, 11 (02)
  • [3] Impact of rock mineralogy on reactive transport of CO2 during carbon sequestration in a saline aquifer
    Rezk, Mohamed Gamal
    Ibrahim, Ahmed Farid
    JOURNAL OF PETROLEUM EXPLORATION AND PRODUCTION TECHNOLOGY, 2025, 15 (01)
  • [4] Effects of CO2/Rock/Formation Brine Parameters on CO2 Injectivity for Sequestration
    Yusof, Muhammad Aslam Md
    Ibrahim, Mohamad Arif
    Idress, Mazlin
    Idris, Ahmad Kamal
    Saaid, Ismail Mohd
    Rosdi, Nadhirah Mohd
    Mohsin, M. Saiful
    Matali, Awangku Alizul Azhari Awangku
    SPE JOURNAL, 2021, 26 (03): : 1455 - 1468
  • [5] Experimental Study of CO2-Saline Aquifer-Carbonate Rock Interaction during CO2 Sequestration
    Azin, Reza
    Mehrabi, Najmeh
    Osfouri, Shahriar
    Asgari, Masoud
    WORLD MULTIDISCIPLINARY EARTH SCIENCES SYMPOSIUM, WMESS 2015, 2015, 15 : 413 - 420
  • [6] Experimental CO2-saturated brine-rock interactions at elevated temperature and pressure:: Implications for CO2 sequestration in deep-saline aquifers.
    Rosenbauer, RJ
    Koksalan, T
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2003, 226 : U603 - U603
  • [7] Interactions of CO2/brine/rock under CO2 sequestration conditions
    US DOE, NETL, Pittsburgh
    PA, United States
    ACS Natl. Meet. Book Abstr., 1600,
  • [8] Interactions of CO2/brine/rock under CO2 sequestration conditions
    Soong, Yee
    Howard, Bret
    Crandall, Dustin
    McLendon, Robert
    Irdi, Gino
    Dilmore, Robert
    Zhang, Liwei
    Lin, Ronghong
    Haljasmaa, Igor
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 252
  • [9] Effects of CO2-brine-rock Fracture Interaction on Reactive Solute Transport Properties During CO2 Sequestration in Deep Saline Aquifers
    Qiao, Liping
    Ren, Mengzi
    Li, Bingyin
    Wang, Zhechao
    ROCK MECHANICS AND ROCK ENGINEERING, 2025, 58 (02) : 1757 - 1775
  • [10] Experimental study of CO2-brine-rock interaction during CO2 sequestration in deep coal seams
    Wang, Kairan
    Xu, Tianfu
    Wang, Fugang
    Tian, Hailong
    INTERNATIONAL JOURNAL OF COAL GEOLOGY, 2016, 154 : 265 - 274